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Abstract: Accurate parametric estimation of path loss models using distinctive machine learning 

techniques are crucial for ensuring reliable mobile communications. They inform network planning, 

help optimize resource allocation, and ultimately enhance user experience. Traditional methods of 

parameter estimation often struggle to adapt to the complex, dynamic environments encountered in 

real-world scenarios, leading to inaccuracies that can compromise network efficacy. To address these 

challenges, machine learning-based global optimization methods have emerged as a promising 

alternative, offering sophisticated techniques that can enhance the precision of parameter estimation. 

This paper explores the benchmarking of various machine learning algorithms based global 

optimization method in predictive path loss modelling at three different study locations. The methods 

include the Particle Swarm Optimization (PTS), Pattern search (PATS), Genetic Algorithm (GA), and 

Simulated Annealing (SIA). With mean square error evaluation metric, the results  reveals that PTS 

attains better global precision credibility with lower MSE values as the iteration number increases 

when estimating the log-distance model parameters.  The results attained by PTS clearly showcase its 

efficiency in finding optimal or near-optimal solutions in continuous search domains. Its adaptive 

nature allows it to quickly converge on good solutions, making it more suitable for the parametric 

path loss model estimations. 

 

1. Introduction  

Path loss modeling is a critical component in the design and optimization of wireless communication 

systems. It involves estimating how much of the transmitted signal power is lost as it travels from a 

transmitting antenna to a receiving antenna. The accuracy of these models directly affects the 

efficiency and effectiveness of wireless communication networks [1-3]. With the advent of machine 

learning, global optimization methods have emerged as powerful tools for enhancing the precision of 

path loss models. This paper explores how machine learning techniques can be leveraged to 

benchamrked for path loss modeling optimisation, discussing their benefits, methodologies, 

applications, and potential future developments. 

Global optimization methods in machine learning focus on finding the best solution from a set of 

possible solutions by minimizing or maximizing a defined objective function. In path loss modeling, 

these methods can be used to fine-tune model parameters, which directly influence the performance of 

wireless communication systems. Traditional methods often rely on empirical formulas or 

deterministic models, which may not capture the complexities of real-world environments [3]. 

Machine learning provides a way to model non-linear relationships and interactions among variables, 

enabling more accurate and robust path loss predictions based on extensive datasets [4-7]. By 

selecting appropriate global optimisation algorithms to aid effective tuning of path loss models 

parameters, researchers can significantly improve the fidelity of cellular network planning. 

The application of machine learning global optimization methods to path loss modeling is already 

seeing tangible results across various fields. For example, in urban environments, these methods can 

be utilized to account for obstacles like buildings and trees that complicate signal propagation. In rural 
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or suburban areas, adapting machine learning models to consider terrain variations can lead to better 

performance. Telecommunications companies can benefit from these optimized models by deploying 

more efficient network configurations, ultimately leading to enhanced user experiences and coverage. 

Furthermore, the use of machine learning in dynamic environments, such as vehicular networks and 

IoT systems, represents an exciting frontier for path loss modeling. 

Particularly, the integration of machine learning global optimization methods in path loss modeling 

holds tremendous potential for further advancements in wireless technology. Future research may 

focus on the incorporation of real-time data through online learning techniques, enabling models to 

adapt to changing conditions in real-time.  

 

2. Path Loss Modeling Concept 

Path loss modeling is a crucial aspect in the field of wireless communications, influencing the 

performance of cellular networks and various wireless technologies [2-4]. It quantifies the reduction 

in power density of an electromagnetic wave as it propagates through space or interacts with 

environmental elements. The complexities present in real-world environments necessitate accurate 

modeling techniques that can account for various factors affecting signal strength, such as distance, 

frequency, terrain, and urban structures. Global optimization methods, with their ability to explore a 

vast search space and provide optimal solutions, have become invaluable in enhancing the accuracy 

and reliability of path loss models [5, 17,18]. 

Global optimization methods refer to a set of numerical techniques aimed at finding the global 

minimum or maximum of a given function, often within a specified range. These methods differ 

significantly from local optimization approaches, which may only identify local extrema. In the 

context of path loss modeling, global optimization techniques can be employed to fine-tune model 

parameters that best fit observational data. The application of these global optimization methods in 

path loss modeling presents numerous advantages. First, they can enhance the accuracy of path loss 

predictions by identifying the most suitable parameters for diverse environments. This is particularly 

important as different urban, suburban, and rural areas exhibit distinct propagation characteristics due 

to variations in building density, vegetation, and topography. By effectively navigating the parameter 

space, these optimization techniques can lead to more precise models that result in better planning and 

deployment of wireless networks, ultimately improving users’ experiences [19-21]. 

Moreover, global optimization methods can facilitate the incorporation of multiple factors into path 

loss models, which traditional approaches may overlook. Advanced algorithms can simultaneously 

handle multiple objectives, such as minimizing error across various distances or frequencies while 

considering environmental variables.  

As researchers and engineers continue to push the boundaries of wireless technology, the optimization 

of path loss models will remain a pivotal element in achieving efficient and reliable communication 

systems. Consequently, adopting and advancing global optimization methods will play a fundamental 

role in the future of wireless networking, ensuring its capability to meet the increasing demand for 

seamless connectivity. 

 

2.1 Literature Review 

Global optimization methods for parametric estimation modeling are essential for accurately 

estimating parameters in complex systems, particularly when traditional local optimization techniques 

may fail [9]. These methods ensure convergence to global optima, addressing challenges posed by 

non-convex cost functions and the need for robust solutions in various applications, including science 

and engineering.  

The particle swam optimisation (PS) optimization method has been applied in several areas, including  

the tuned mass damper for design optimization  [10] and cable-damper systems [11, 12]. 

In [13], the authors demonstrated that the particle swam optimisation method has the capacity to 

estimate parameters in spatial autoregressive models without requiring a good initial guess, thus 

outperforming local methods like Newton-Raphson and Nelder-Mead in terms of success rate. 

In [14, 15], the genetic algorithm (GA) approach has been employed for vapour-liquid thermodynamic 

and wind power curve modelling based prediction. The author in [16] demonstrated the estimation 

capacity of simulated annealing (SIA)in nonlinear parametric determination of kinetic energy. Similar 

approach using simulated annealing is also shown in [17], but for Equivalent dipole parameter 

estimation.   
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This paper explores the benchmarking of various machine learning algorithms based global 

optimization method in predictive path loss modelling, outlining their strengths and weaknesses, and 

providing insights into their practical applications in modern communication networks. 

3. Methodology 

This study employs a comprehensive five-phased methodology. The first phase details the execution 

of a field test measurement campaign aimed at collecting the essential signal data necessary for tuning 

the propagation path loss model. and identifying its parameters. Additionally, it outlines the generic 

propagation model considered, along with its associated variables. 

In the second phase, we define the genetic log-distance path loss model and specify its unique 

modeling variables. The third phase introduces the theoretical famework of the four optimization 

methods that have been adopted for this research. The fourth phase provides the objective function 

and  a dual set of benchmarking criteria developed for this study. Finally,  the corresponding 

benchmarking results which reveal the specific performance of each optimisation methods is 

presented in phase five. This structured approach not only enhances the clarity of our methodology 

but also ensures a thorough examination of the propagation loss model and its optimization 

 

3.1 Measurement 

Measurements were conducted using field test tools equipped with TEMS application software, which 

is renowned for its capabilities in radio spectrum analysis. TEMS is a sophisticated professional 

testing software designed for radio frequency cellular communication networks. It can scan, collect, 

and display a substantial amount of network data under realistic conditions. Additionally, it provides 

users with the opportunity to evaluate and analyze network performance, as well as to identify and 

diagnose existing network issues efficiently. 

The experimental setup for the field drive test, designed for signal data collection, is illustrated in Fig. 

1. This drive testing involves comprehensive measurements of signal strength and service quality 

parameters at the receiver terminal within the coverage area of the evaluated base station. 

Consequently, the drive test system serves as a valuable tool for gaining in-depth insights into the 

performance of cellular networks. 

The tools utilized in the field drive test system include a Global Positioning System (GPS), 

specialized mobile phone software, two LTE mobile phones, a scanner, MapInfo software, data cards, 

a laptop, a power inverter, direct test cables, and an extension board. All these components will be 

integrated and housed within a vehicle for the drive test, as depicted in Fig1. The MapInfo software is 

specifically employed to display drive test location maps and generate route data. Using the field 

drive test system, live signal data will be collected around four Long Term Evolution (LTE) eNodeB 

antenna sites, each operating at a bandwidth of 10 MHz. The transceiver base station antennas, 

referred to as NodeBs, are sectorized to enhance coverage. This LTE network is operated by one of 

the leading telecom service providers in Nigeria, offering LTE services across Port Harcourt City, 

Nigeria.The path loos data were obtained from the measured signal power, RSRP (dBm) 

mathematically using the formula [4, 5, 7]: 

       
(1)                                                                                

Where EIRP is calculated as: 

EIRP = Pt + Gt– Fr                                                                                             (2)                                                                   

With Gt, bening the transmit antenna gain, Pt, is the transmitted power, and Fr, represent the 

transmission cable/connectionloss, all in dB. The RSRP denotes the Reference Signal Received Power. 

 

measRSRPEIRPdBPathloo −=)(
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3.2 Log-Distance Path loss Model 

The Generic Log-Distance Path Loss Model serves as a fundamental framework for understanding 

how radio signals attenuate over varying distances in wireless communication systems [3-6]. This 

model is particularly useful in predicting the path loss encountered by electromagnetic signals as they 

travel through different environments, which can significantly affect the performance and reliability 

of wireless networks. The model captures the relationship between the distance from a transmitter and 

the signal strength received at a specific location, thereby allowing engineers and researchers to 

design and optimize networks by accurately estimating coverage areas and identifying potential dead 

spots. At the heart of the Generic Log-Distance Path Loss Model is the logarithmic relationship 

between distance and path loss. The model is mathematically expressed as[1,3,5]. 

Thus, the parametric log-distance path loss model can expressed as: 

PL(log)=p1+p2*log10 (d) +p3*log10 (f);                                                                    (3)  

where f indicate the transmission frequency of the transmitter and p (p=p1,p2, p3) indicate the terrain 

and the offset influencing parameters. 

 

 3.3 Objective Function 

An objective function is a mathematical expression that quantifies the performance of a solution based 

on specific criteria [17-18]. In global optimization, the objective function is evaluated repeatedly as 

part of the optimization process. 

In this paper, we engage the four algorithms, which includes the Particle Swarm Optimization (PSO), 

Pattern Search (PATS), Genetic Algorithms (GA), and Simulated Annealing (SA), to conduct the 

search space and obtain potential solutions to the parametric log-distance propagation modelling 

problems. In mathematical terms, we consider a global optimisation objective function 

(Obj_gl(p)),which can be expressed as: 

Obj_gl(p)=min(PLmea-PL(log))                                                                       (4)  

where PLmea and PL(log) indicate the measured pathloss and  the parametric log-distance path loss model 

whose parameters are to be determined using the four global optimisation methods.  

 

3.4 Global Optimisation Methods: Theoretical framework 

 

Particle Swarm Optimization (PSO), Pattern Search (PATS), Genetic Algorithms (GA), and 

Simulated Annealing (SA) represent a suite of powerful global optimization techniques used in 

various fields, including engineering, economics, and artificial intelligence. These algorithms are 

particularly beneficial in solving complex optimization problems where traditional approaches may 

struggle to find the global optimum due to the presence of multiple local minima. Each method 

leverages a unique approach to navigating the search space, reflecting different principles drawn from 

natural phenomena or mathematical theory. 
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Fig.1:  A Sketch of TEMS Drive Test Configuration 
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Particle Swarm Optimization is inspired by the social behavior of birds and fish, where a group of 

individuals (particles) collaboratively explore the search space. Each particle adjusts its position based 

on its own experience and that of its nearest neighbors, balancing exploration and exploitation. This 

collective intelligence enables PSO to efficiently converge on optimal solutions, often with fewer 

computational resources compared to other methods. On the other hand, Pattern Search is a 

derivative-free optimization technique that evaluates solutions iteratively, using a pattern set to 

explore the space around known good points. Unlike PSO, it does not rely on gradient information, 

making it robust for functions that are discontinuous or noisy. 

Genetic Algorithms are grounded in the principles of natural selection and genetics, operating on a 

population of potential solutions that undergo selection, crossover, and mutation to evolve toward 

better solutions over generations. This stochastic search method mimics biological evolution, 

factoring in survival of the fittest and genetic variability.  

In contrast, Simulated Annealing is inspired by the annealing process in metallurgy, where controlled 

cooling allows materials to reach a minimum energy state. SA searches for optimal solutions by 

exploring the neighborhood of a solution and probabilistically accepting worse solutions to escape 

local optima. Each algorithm's distinct approach provides valuable tools for tackling a wide array of 

optimization challenges, emphasizing the importance of understanding their unique characteristics to 

apply them effectively in real-world scenarios 

While these global optimization methods provide significant advantages, they may also introduce 

computational complexity and require careful implementation to ensure efficiency and effectiveness 

in various modeling scenarios. 

3.5 Benchmarking Criteria 

 

The evaluation of various performance metrics is crucial in assessing the effectiveness of different 

strategies in problem-solving and optimization [18-21]. To ensure a fair contest, we need solid 

evaluation metrics that measure accuracy, efficiency, and robustness. In this paper, the focus is on the 

following metrics to measure accuracy, efficiency, and robustness of the benchmarking process. The 

metrics include the Mean Percentage Error (MAPE), and Residual Sum of Square Error (RSE) and 

Mean Square Error (MSE). The MAPE is a statistical metric that estimates the average percentage 

difference between predicted and actual values. It provides an overview of the accuracy of a 

prediction method in terms of percentage deviation from the true values. The RSE measures the level 

of variance in the error term, or residuals, of a method or model. The smaller the residual sum of 

squares, the better your model fits your data; the greater the residual sum of squares, the poorer your 

model fits your data. The MSE measures the mean of the squared differences between the predicted 

values and the actual values. Fundamentally, it measure the average magnitude of the error between the  

predicting method and the true target values.  

4. Results and Analysis 

As mentioned earlier, the engagement of different performance metrics is crucial in assessing the 

effectiveness of various problem-solving and optimization methods. In this section we present the 

results for the the four bench-marked methods—Particle Swarm Optimization (PS), Pattern search 

(PATS), Genetic Algorithm (GA), and Simulated Annealing (SIA) by using MAPE, MAE, RSE and 

MSE metrics. These metrics have been extensively implemented in Matlab2024b software to evaluate 

the performance of the four global optimisation methods in determining the parameters of the log-

distance path loss model in connection measured path loss data. A lower value in these metrics 

correlates directly with enhanced algorithm performance in minimizing prediction errors with respect 

to the log-distance parametric estimations  

Shown in Figs. 2 to 4 are the graph which reveal the predictive fitting performance of the four bench-

marked global machine learning PTS, PATS,GA and SIA using MAPE as a performance metric in 

three different study locations where field measurements were conducted. From the graphs, PTS 

attained 1.732, 2.388, and 2.647 MAPE values in locations 1-3, while PATS attained 2.975, 5.090 and 

4.268; GA attained 2.647, 4.424 and 4.888; SIA attained  1.734, 2.555 and 2.685 MAPES values, 

respectively at the same locations. A Lower MAPE value with PTS indicates that its global precision 

credibility in estimation the the log-distance model parameters is more accurate compare to other 

methods that were used in the same process. 
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Fig.2: Pathloss  data fittings with the four benchmarked PST, PATS, GA and SIA in location 1 

 

 
Fig.3: Pathloss  data fittings with the four benchmarked PST, PATS, GA and SIA in location 2 

 

    
Fig.4: Pathloss  data fittings with the four benchmark PST, PATS, GA and SIA in location 3 

 

Shown in Figs. 5 to 7 are the graph which reveal the predictive fitting performance of the four bench-

marked global machine learning PTS, PATS,GA and SIA using residual sum error (RSE) as a 

performance metric in three different study locations where field measurements were conducted. With 

this metric, the smaller the the value, the better its precision capacity. 

From the graphs, PTS attained 5.46x10-8, 5.46x10-8, and 5.46x10-8,  RSE values in locations 1-3, 

while the GA, PATS and SIA attained   higher values at the same locations. Again, lower RSE value 

with PTS also indicates that its global precision credibility in estimation the the log-distance model 

parameters is more accurate compare to other methods that were used in the same process. 
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Fig.5: Residual error distribution pattern with the four benchmark PST, PATS, GA and SIA in location 

1 

 

 
Fig.6: Residual error distribution pattern with the four benchmark PST, PATS, GA and SIA in location 

2 

 

 
Fig.7: Residual error distribution pattern with the four benchmark PST, PATS, GA and SIA in location 

1 

 

Shown in Figs. 8 to 10 are the graph which reveal the predictive fitting performance of the four 

bench-marked global machine learning PTS, PATS,GA and SIA using MSE as a performance metric 

versus the number of iterations in the three different study locations where field measurements were 

conducted. In essence, MSE measures the average magnitude of the error between the  predicting 

method and the true target values. With this metric, the smaller the the value, the better its precision 

credibility. 
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In the context of machine learning-based  global optimisation methods, MSE and the number of 

iterations are closely related. The results reveal that as the number of iterations increases, the MSE 

typically decreases, indicating that each method is learning and improving its predictions over 

time. However, there's a point of diminishing returns where adding more iterations doesn't significantly 

reduce the MSE. This indicates that the optimisation methods has reached its limits in terms of  

performance improvements on the predicting target. Again, the graphical figures reveals that PTS 

attains better global precision credibility with lower MSE values as the iteration number increases 

when estimating the log-distance model parameters.  The results attained by PTS clearly showcase its 

efficiency in finding optimal or near-optimal solutions in continuous domains. Its adaptive nature 

allows it to quickly converge on good solutions, making it more suitable for the parametric path loss 

model estimations. However, while PTS can effectively explore the search space, it may also suffer 

from premature convergence in complex landscapes with many local minima. 

 
Fig.8: MSE versus iteration plots for the four benchmarked PST, PATS, GA and SIA in location 1 

 

 
Fig.9: MSE versus iteration plots for the four benchmarked PST, PATS, GA and SIA in location 1 
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Fig.10: MSE versus iteration plots for the four benchmark PST, PATS, GA and SIA in location 1 

 

             sols                 fvals     fevals 

    _____________________________    ______     

     22.851     20.842     1387.7    69.773     1260  

    -80.586     37.422         30     41.43      640  

     8.9524     23.088     18.779    40.702    61186  

     21.544     21.056     112.94     40.71     6756  

                  

 sols                  fvals     fevals 

_____________________________    ______    ______ 

      72.993      11.341     -3398.4    90.096     1264  

     -84.277      36.953          30      60.8      640  

    -0.82969      23.218      18.055    48.419    49200  

      31.637      18.085      128.69    52.385     3164  

 

                sols                 fvals     fevals 

    _____________________________    ______    ______ 

 

      46.85     17.718    -217.34    57.297     1257  

    -77.188     37.422         30     44.36      640  

    -3.9971     25.816    -7.8499    41.244    43204  

     68.723     14.092     2.4833    42.427     1526  

 

5 Conclusion 

Machine learning based global optimisation enhance parameter estimation of existing path loss 

models by leveraging large datasets to identify complex patterns and relationships that traditional 

methods may overlook. This allows for more accurate predictions in varied and dynamic 

environments. 

This paper explores the benchmarking of four machine learning techniques based global optimization 

method in predictive path loss modelling at three different study locations. The methods include the 

Particle Swarm Optimization (PTS), Pattern search (PATS), Genetic Algorithm (GA), and Simulated 

Annealing (SIA). By means of mean square error evaluation metric, the results  reveals that PTS 

attains better global precision credibility with lower estimation errors when estimating the log-

distance model parameters.  The results attained by PTS clearly demonstrates its efficiency in finding 

optimal or near-optimal solutions in continuous search domains. Its adaptive nature allows it to 

quickly converge on good solutions, making it more suitable for the parametric path loss model 

estimations. 
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