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Abstract: This paper proposes and evaluates a deep learning approach using Long Short-Term 

Memory (LSTM) networks for the predictive modeling of wireless path loss. We developed the deep 

LSTM network architecture trained on measured signal path loss datasets. The model takes relevant 

environmental and geometrical features as input and predicts the path loss value. We compare the 

performance of the LSTM model under three prediction optimisation algorithms using standard 

evaluation metrics like Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The 

algorithms include the stochastic gradient descent (SGDM), Root mean square propagation (RMSP) , 

and Adaptive moment estimation (ADAM). Results demonstrate that the deep LSTM network trained 

with the RMSP algorithm achieves superior predictive accuracy, effectively capturing complex 

propagation phenomena and environmental dependencies. The findings imply that an LSTM-based 

deep learning method trained with the RMSP algorithm offers a robust and potentially adaptive 

solution for accurate path loss prediction in various wireless environments. 

Keywords: Path Loss Prediction, Deep Learning, Long Short-Term Memory (LSTM), Wireless 
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1. Introduction 

The performance of wireless communication systems is fundamentally governed by how radio 

signals propagate from transmitter to receiver [1-3]. Path loss, a measure of signal attenuation as it 

travels through the environment, is a primary factor influencing coverage, data rates, and overall 

system capacity. Numerous empirical and semi-empirical path loss models exist, such as the Free 

Space Path Loss (FSPL), Okumura-Hata, and COST 231 models [2], which are based on theoretical 

principles and measurements under specific conditions. However, these models often rely on 

simplified assumptions and may not accurately reflect the intricate propagation mechanisms present 

in diverse and evolving environments, including urban canyons, indoor spaces, and dynamic 

scenarios with moving objects [4-11]. 

With the advent of machine learning, there is an opportunity to enhance path loss predictions by 

leveraging large datasets gathered from real-world measurements. The advent of Big Data and 

advancements in machine learning have opened new avenues for developing more accurate and 

adaptive path loss prediction models [13-15]. Machine learning techniques can learn complex, non-

linear relationships from large datasets of measured path loss values, along with relevant 

environmental features, to provide more precise predictions [13, 16-17]. Among the various 

machine learning architectures, deep neural networks, particularly Recurrent Neural Networks 

(RNNs) and their advanced variants like LSTMs, have shown significant promise in handling 

sequential data and capturing long-term dependencies [18, 19]. This paper focuses on the potential 

of LSTMs for predictive learning of path loss datasets. 
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Thus, the motivation behind this research stems from two primary factors. The first is the the 

limitations of existing path loss models in complex environments and their reliance on ideal conditions. 

The second is the extensive growth of data generated from advanced wireless communication systems, 

which can be better harnessed through machine learning techniques to derive more accurate and robust 

predictions. 

2. Theoretical Framework 

2.1 Path Loss Models 

Path loss models can be categorized into empirical, deterministic, and statistical models [5-8]. 

Empirical models derive equations based on measured data, while deterministic models simulate 

physical phenomena causing signal degradation. Statistical models, on the other hand, leverage 

historical data to predict outcomes based on underlying statistical properties. 

2.2 Long Short-Term Memory (LSTM) 

LSTM networks are a type of recurrent neural network (RNN) specifically designed to learn from 

sequences of data while mitigating issues like vanishing and exploding gradients [12,14]. LSTMs 

utilize memory cells and gating mechanisms to preserve information over long time intervals, making 

them particularly well-suited for tasks involving sequential data, such as time-series predictions in path 

loss forecasting. 

2.3 Review of related works 

Accurate prediction of path loss is crucial for network planning, resource allocation, and 

optimization. While conventional models, such as the Hata model and the Okumura model, have 

provided basic frameworks, they often fall short in dynamic environments characterized by 

multipath propagation, shadowing, and varying geographical features. Smith et al. [5], elucidate the 

limitations of these conventional methods, particularly their inability to incorporate variable terrains 

and urban environments. 

In recent years, machine learning, particularly deep learning, has emerged as a powerful alternative 

for modeling complex relationships in data. With the rise of machine learning, several studies have 

sought to enhance path loss predictions through the application of algorithms beyond traditional 

statistical methods. Early efforts utilized simple regression models and decision trees, as reported by 

Zhao et al. [17]. However, models often struggled with generalization across different conditions. 

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network (RNN), have 

shown promise in handling sequential data and capturing temporal dependencies in recent time. 

Given their ability to model time-series data, LSTMs have gained traction in the field of wireless 

communication for predicting different datasets. For instance, Buzzini et al. [12] gathered extensive 

measurement data in a metropolitan area to train their LSTM model, significantly improving the 

model's performance in that particular geographical context. 

Kumari et al. [4] utilized LSTMs to predict path loss in urban environments, achieving significant 

accuracy improvements over both traditional models and simple feedforward neural networks. 

Chakraborty et al. [15] compared LSTM to Convolutional Neural Networks (CNNs) and hybrid 

models. Their results indicated that LSTM networks excelled in capturing temporal dependencies 

resulting from dynamic environments. Tahsin et al. [16] integrated geographical information system 

(GIS) data into LSTM frameworks to enhance the predictive accuracy of path loss models, bridging 

the gap between spatial and temporal aspects. 

These previous works indicate a growing inclination towards utilizing LSTM networks for path loss 

prediction, with promising results in terms of accuracy and adaptability [20, 21]. However, some of 

these key challenges remain [21]. Researchers have noted issues regarding overfitting, the need for 

extensive training data, and computational burden. 

In this contribution, we propose and evaluate a deep learning approach using LSTM networks for 

the predictive modeling of wireless path loss under three prediction optimization algorithms. The 

algorithms include the stochastic gradient descent (SGDM), Root mean square propagation (RMSP), 

and Adaptive moment estimation (ADAM).  The method takes relevant environmental and 
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geometrical features as input and predicts the path loss value, demonstrating its superior 

performance on a specific dataset, analyzing its capabilities. 

3. Methodology 

Here, present the measured signal path loss data collection method and the proposed deep LSTM 

network architecture. The model takes relevant environmental and geometrical features as input and 

predicts the path loss value. The methods applied to investigate the performance of the LSTM model 

under three prediction optimisation algorithms using standard evaluation metrics like Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE) are also shown. The algorithms include the 

stochastic gradient descent (SGDM), Root mean square propagation (RMSP), and Adaptive moment 

estimation (ADAM) 

 

3.1 Dataset Collection 

In this paper, we employed a field drive test-based method for collecting path loss data. This drive 

testing involves comprehensive measurements of signal strength and service quality parameters at the 

receiver terminal within the coverage area of the assessed base stations (BS). Consequently, the drive 

test system offers valuable insights into the performance of cellular networks. 

The tools utilized in the field drive test system include a Global Positioning System (GPS), mobile 

phone software, two LTE mobile phones, a scanner, MapInfo software, data cards, a laptop, a power 

inverter, direct test cables, and an extension board. All these components were integrated and housed 

within a vehicle for the drive test. The MapInfo software is specifically designed to visualize drive 

test location maps and generate route data. 

Using the field drive test system tools, we acquired live signal data from a typical Long Term 

Evolution (LTE) transceiver base station antenna site, all operating at a frequency of 2600 MHz with 

a bandwidth of 10 MHz. These transceiver base station antennas, referred to as NodeBs, are 

sectorized. The LTE network under investigation belongs to one of the major telecom service 

providers offering GSM, WCDMA, HSPA, and LTE services across Uyo town, Akwa Ibom State, 

Nigeria. 

Measurements were conducted using field test tools equipped with TEMS application software, which 

is specifically designed for radio spectrum analysis. TEMS is a robust and professional-grade testing 

software for radio frequency cellular communication networks. It can scan, collect, and display a wide 

range of network data in real-world conditions. Additionally, it provides users with the opportunity to 

assess and analyze network performance, as well as to identify and diagnose existing network issues 

efficiently. 

 

3.2 Data Preprocessing 

Data preprocessing steps are critical to ensure the quality of input for the LSTM model: 

1. Normalization: Scaling features to a standard range to facilitate faster convergence. 

2. Segmentation: Dividing data into sequences to create input-output pairs appropriate for LSTM 

training. 

3. Handling Missing Data: Implementing techniques such as interpolation to address gaps in the 

datasets. 

3.3 LSTM Network Architecture 

The LSTM model for path loss prediction includes the following components as displayed in Fig. 1: 

• Input Layer: A fully connected layer to accept processed input features. 

• LSTM Layers: Stacked LSTM layers to capture temporal dependencies in the data. 

• Dense Layer: A fully connected layer that interprets the output from LSTM. This layer 

captures the two hidden layers and the dropout layer. 

• Output Layer: A regression layer providing the predicted path loss value. 
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Fig. 1: The LSTM Architecture comprising of the input, dense, and output layers.  

This Fig. reveals the data information flow through the LSTM layer with input x and output y with t 

time steps.  

 

3.4 The LSTM Training Algorithms 

The choice of optimization algorithm plays a crucial role in the training of LSTM networks. The 

following algorithms are investigated in this paper: 

 

(a) Stochastic Gradient Descent with Momentum Algorithm 

SGDM is an iterative approach to finding the minimum of a function, frequently employed in machine 

learning. SGD with Momentum is a powerful optimization technique for training deep learning models 

as it helps to smooth the optimization path, reducing oscillations and speeding [22].   

(b) Root Mean Square Propagation 

Stochastic gradient descent with momentum uses a single learning rate for all the parameters. Other 

optimization algorithms seek to improve network training by using learning rates that differ by 

parameter and can automatically adapt to the loss function being optimized. Root mean square 

propagation (RMSProp) is one such algorithm [23]. It keeps a moving average of the element-wise 

squares of the parameter gradients. The RMSProp algorithm uses this moving average to normalize the 

updates of each parameter individually. Using RMSProp effectively decreases the learning rates of 

parameters with large gradients and increases the learning rates of parameters with small gradients. ɛ is 

a small constant added to avoid division by zero. 

(c) Adaptive Moment Estimation 

Adaptive moment estimation (Adam) [24] uses a parameter update that is similar to RMSProp, but with 

an added momentum term. It keeps an element-wise moving average. The full Adam update also 

includes a mechanism to correct a bias that appears at the beginning of training.  

3.5 Training and Testing 

The model is trained using Mean Squared Error (RMSE) as the loss function, and the datasets are split 

into training and testing sets. Early stopping is implemented to avoid overfitting. 

3.5 General Model Evaluation: 

https://uk.mathworks.com/help/deeplearning/ref/trainingoptions.html#bu59f0q_sep_mw_ace4d8cf-3130-4e7c-a0f3-4e13f8f890ff
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• Testing: Evaluate the trained model's performance on the unseen test set using the RMSE, 

Mean Absolute Error (MAE), and R-squared as performance metrics. 

• Comparison: We compare the performance of the LSTM model under three prediction 

optimisation algorithms, which are SGDM, RMSP and ADAM.  

• Visualization: Visualize predicted path loss against measured path loss, and plot prediction 

errors across different regions or scenarios to understand the model's strengths and 

weaknesses. 

4. Results and Discussion 

The results and discussion of the proposed LSTM network performance  for the adaptive learning of 

the path loss data under three optimisation algorithms ( SGDM, RMSP and ADAM) during training 

and testing with path loss data are shown in this section. The program coding and evaluation of the 

proposed learning approach using three performance metric were implemented with MATLAB 2024b 

computation software. 

Shown in the graphs of Figs 2-4 are the predictive fitting performance updates achieved by the LSTM 

network trained with the path loss data under three prediction optimisation algorithms using the RMSE 

metric. While the (a) parts of Figs 2-4 (a) reveals the predictive fitting performance updates achieved 

by the LSTM network trained with the path loss data under three prediction optimisation algorithms, 

the (b) part displayed attained RMSE values during path loss data training. The overall precision 

performance attained by LSTM with the RMSP, SGDM and ADAM training and testing using RMSE, 

MAPE and Max.MAPE are shown in Figs.5-6 and Table 1. The results clearly demonstrate that the 

deep LSTM network trained with RMSP algorithm achieves superior predictive accuracy, effectively 

capturing complex propagation phenomena and environmental dependencies. The findings imply that 

LSTM-based deep learning method trained with RMSP algorithm offers a robust and potentially 

adaptive solution for accurate path loss prediction in various wireless environments in the studied 

enviroments 

 
Fig. 2: Proposed LSTM with RMSP prediction performance during path loss data training 
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Fig. 3: Proposed LSTM with SGDM prediction performance during path loss data training 

 

 
Fig. 4: Proposed LSTM with ADAM prediction performance during path loss data training 
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Fig. 5:  Performance Comparison of LSTM with RMSP, SGDM and ADAM during path loss data 

training 

 

         
Fig. 6: Performance comparison of LSTM with RMSP, SGDM and ADAM during pathloss data testing 

 

Table1: LSTM Algorithm Performance during  Predictive Pathloss Data Training and Testing 

LSTM Algorithm Training 

 RMSE MAPE Max.Mape 

RMSP 5.22 1.18 10.90 

SGDM 10.13 2.40 18.66 

ADAM 11.61 2.66  

 Testing 

 RMSE MAPE Max.Mape 

RMSP 6.12 1.42 10.90 

SGDM 6.69 1.59 15.16 

ADAM 10.70 2.39 26.03 

 

5. Conclusion  

This paper presented a novel approach to path loss prediction using LSTM networks, effectively 

harnessing the power of deep learning to address complexities in wireless communication 

environments. The performance of the LSTM model was deeply investigated under three prediction 

optimisation algorithms using standard evaluation metrics like Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE). The algorithms include the stochastic gradient descent (SGDM), Root 

mean square propagation (RMSP), and Adaptive moment estimation (ADAM). The algorithms include 

the stochastic gradient descent (SGDM), Root mean square propagation (RMSP), and Adaptive 

moment estimation (ADAM). Results demonstrate that the deep LSTM network trained with RMSP 

algorithm achieves superior predictive accuracy, thus suggesting it can make means to significant 

contribution to network planning and optimization. 

Future work may involve exploring hybrid models integrating LSTM with other machine learning 

techniques, employing transfer learning to leverage datasets across different environments, and real-

time implementation in mobile applications for dynamic network management. 
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