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Abstract: University lecture timetabling is a complex optimization problem involving multiple constraints and resource
limitations. This study presents a hybridized Ant Colony Optimization (ACO) and Fuzzy Logic (FL) based system to
enhance scheduling efficiency and accuracy. By integrating Constraints Logic Programming, the proposed system
effectively handles both hard and soft constraints, optimizing lecture schedules while minimizing clashes and resource
conflicts. FL is employed to manage uncertainties in the search space, improving the adaptability and decision-making
capabilities of ACO. The study also incorporates a knowledge base to store and process timetabling constraints, ensuring
logical and structured allocations. Scatter plot analysis reveals that certain hard constraints, such that no lectures should be
scheduled after 6:00 pm (H3) and the course must be assigned to either the first or second semester (H4) exhibit high
stability and significantly influence timetable optimization. The system is implemented using MATLAB R2015a,
Microsoft SQL Server, and Python, with results demonstrating improved scheduling efficiency compared to conventional
methods. The proposed model enhances knowledge assimilation, reduces lecture delays, and contributes to more effective
university timetabling solutions.

Keywords: Lecture Timetabling, Hard and Soft Constraints, Scheduling Efficiency, Hybrid Algorithm, Decision Support
System.

1.0 Introduction
Companies, institutions, and organizations strive to allocate resources efficiently to minimize costs while maximizing
productivity and profitability. This is accomplished through strategic planning, which involves structuring operations,
setting guidelines, and implementing policies that drive businesses toward their objectives. Resource allocation plays a
crucial role in optimizing available assets to achieve specific goals, such as in-flight scheduling, timetable scheduling, and
online reservations. Tertiary institutions serve as the foundation of the educational sector, fostering knowledge acquisition
and contributing significantly to global economic growth. Lectures and examinations are essential for assessing students'
academic progress and performance. However, one of the major challenges faced by educational institutions is university
lecture timetabling. [1] classify university timetabling as a non-deterministic polynomial (NP)-hard problem, meaning that
the computational time required to solve it increases exponentially with the problem size. Various approaches, including
sequential, cluster-based, and meta-heuristic methods, have been employed to address this issue [2],[3][4]. Despite these
efforts, existing timetabling methods often result in poor knowledge retention among students, lecture delays, insufficient
lecture periods, and scheduling conflicts, ultimately leading to the production of underprepared graduates entering the
workforce annually [5][6]. The constraints in university lecture timetabling are categorized into hard and soft constraints
[7]. Hard constraints must be strictly adhered to for academic activities to function smoothly, while soft constraints support
and enhance hard constraints to improve the effectiveness of timetable scheduling. This study aims to satisfy hard
constraints while minimizing the violation of soft constraints in university lecture timetabling. Effective scheduling
impacts teaching quality and student learning by aligning course timeslots with preferences. Various methods, including
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nonlinear programming, coloring theory, evolutionary algorithms, genetic algorithm (GA), particle swarm optimization
(PSO), tableau search (TS), and ant colony optimization (ACO), have been developed to address this challenge[8]. These
algorithms aim to find optimal solutions within the search space. Among them, ACO has demonstrated strong
performance due to its minimal parameter requirements, parallelism, and positive feedback, which enable the rapid
discovery of optimal solutions. However, ACO presents challenges such as difficulty in theoretical analysis and uncertain
convergence time. To overcome these limitations, fuzzy logic (FL) is introduced to manage uncertainties and vagueness in
the search space. FL mathematically represents imprecision and noisy data, offering an inference system that mimics
human reasoning. Despite its strengths, conventional knowledge representation techniques struggle to express fuzzy
concepts effectively, as classical probability and first-order logic are inadequate for handling commonsense knowledge.

To address these limitations, ontology is integrated into the timetabling framework, providing a structured visualization of
domain knowledge. This research proposes a hybrid approach combining ACO, FL, and ontology for university
timetabling. Constraints Logic Programming (CLP) is used to incorporate both hard and soft constraints into the system,
ensuring optimal scheduling. In this hybrid model, FL decision variables refine ACO's search process. By integrating these
techniques, the proposed system enhances timetabling efficiency, effectively resolving classroom constraints, and
optimizing university scheduling.

The rest of the paper is organized as follows: Section 2 reviews existing literature on lecture timetable scheduling while
Section 3 presents the methodology, and Section 4 presents results and discussion while section 5 concludes the paper with
direction for future research.

2.0 Related Works
While students and lecturers assess timetable quality based on their individual preferences, there are also standardized
criteria that apply collectively such as minimizing workloads and idle time. [9] adopted a multi-level multi-criteria
approach to addressing the university timetabling problem. They demonstrated that computational results yield the
procedure's ability to produce high-quality schedules. Genetic algorithms (GAs) are widely used optimization tools,
inspired by biological evolution and the survival of the fittest [10][11]. Ideally, GAs explores the search space by
evaluating multiple potential solutions and can be easily hybridized to form knowledge-augmented GA models [12].
Several studies have attempted to improve lecture timetabling. [13] developed a scheduling system using a modified
quicksort algorithm but failed to account for university management staff preferences. [14] introduced an integer
programming approach for final exam scheduling, aiming to maximize student study time. However, the model struggled
with handling uncertainties and did not consider university management preferences. [15] applied a fuzzy multiple
heuristic approach to optimize exam scheduling. The order of exam placement significantly impacted the final schedule,
with difficult exams placed first to satisfy constraints. However, this method often resulted in resource omissions, venue
clashes, and lacked adaptability to changes. These challenges highlight the need for more flexible and robust scheduling
solutions to optimize university timetabling. [16] implemented an ACO-based approach in parallel to solve university class
scheduling as a constraint satisfaction problem. Their findings showed that Ant Colony System (ACS) with pheromones
outperformed ACS without pheromones, producing good timetabling solutions.

However, the optimal number of ants remained uncertain, and the study relied on limited artificial data (50 records, three
classrooms), which may have affected results. Future research should determine the optimal number of ants for hybridizing
ACO with First-Order Logic (FOL), Fuzzy Logic (FL), and Ontology while comparing it with other heuristics. [17]
explored three types of ACO parallelism: ant-level, data-level, and functional parallelism. Most ACO implementations use
ant-level parallelism, which could be further investigated for efficiency improvements. [18] proposed ‘Ant-Solver’, an
ACO-based approach for solving Constraint Satisfaction Problems (CSPs). This algorithm followed the standard ACO
scheme but optimized parameter influences through local search techniques. Key parameters included pheromone factor
weight, quality factor weight, persistence rate, and the number of ants. By integrating repair-based local search, ‘Ant-
Solver’ directed ants toward promising solutions. The choice between fast but less effective local searches and slower but
more robust methods remains crucial in optimizing CSP resolution. To enhance the ‘Ant-Solver’, a preprocessing step is
introduced to improve search space exploration at minimal cost, allowing solutions to be found earlier. This step gathers a
representative set of local minima, from which the best ‘N’ is selected to initialize pheromone trails. [19] explored agent
technology for timetabling, highlighting its distributed nature and performance dependency on distributiveness. The study
emphasized the need for open timetabling systems that interact with existing software, store data in databases, and integrate
results into these systems.

The research suggested that systems should interpret user preferences and provide accessible feedback. However, the
current system's scope was too limited for practical use, necessitating integration with running systems for broader
applicability. [20] applied constriction particle swarm optimization (PSO) with local search to solve university course
timetabling problems. The aim was to incorporate teacher and class preferences to enhance scheduling efficiency and
prevent negative impacts on learning. By encoding particles based on timeslots rather than study hours and introducing an
interchange heuristic, the approach improved solution quality. Additionally, an interchange local search mechanism
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prevented premature convergence. The study successfully addressed conflicts in teacher, class, and classroom schedules,
leading to improved satisfaction among stakeholders. However, further refinement is necessary to enhance adaptability and
integration into real-world applications. This study is best implemented on a system with limited resources, requiring
hybridization for reliability and cost reduction. [21] introduced a university course timetabling approach using Constraint
Logic Programming (CLP) with soft constraints.

The key advantages of this method include its declarative problem descriptions through logical constraints and a constraint
propagation technique that minimizes the search space. Unlike rigid scheduling frameworks, university timetabling
presents additional requirements and preferences, which were validated using datasets from different semesters. [22] used a
hybrid metaheuristic combining an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the
University Course Timetabling Problem. EM is a global optimization algorithm based on attraction-repulsion physics,
while GD is a local search method that accepts worse solutions within a set boundary. This paper improves the approach by
using the dynamic force from the attraction-repulsion mechanism to update the boundary level during the search process.
However, their approach, tested on a population size of 50, lacks scalability. Although [23] reviewed machine learning
(ML)-assisted metaheuristics with promising results on the use of ML models such as Deep Neural Networks, Hopfield
Networks, and Self-Organizing Maps, the present study focuses on the use of ACO and FL methods. Current meta-
heuristic approaches struggle with adaptability and computational efficiency in scheduling.

Integrating ACO with FL enhances scheduling accuracy by addressing uncertainty and complexity. Our approach adopts a
model that connects to a database, managing huge connection records. Through a simple interface, users select a database
management system (DBMS), view accessible databases, and execute structured query language (SQL) queries locally or
across connected nodes.

3.0 Methodology
This study focuses on a faculty at the University of Uyo, consisting of seven departments, each offering a diverse range of
courses. Each semester, these courses must be distributed unevenly across 50-time slots per week and allocated to
approximately 40 lecture rooms, including laboratories and workshops. The faculty's operations are divided into
administrative and academic activities. While some courses require laboratory sessions, most are conducted in regular
lecture rooms. Scheduling these courses involves assigning them within a defined timeframe while managing limited
resources, which presents constraints in constructing the lecture timetable. To optimize scheduling, factors such as time
slots, available venues, student enrollment, class sizes, and course requirements must be carefully considered. Effective
timetable analysis requires evaluating key resources, including periods, student numbers, venue capacities, courses, and
lecturers.

3.1 Model Formulation
The current method of timetabling scheduling in the University of Uyo is a manual approach and this leads to the clashing
of lecture venues and allocation of large populations of students to a smaller hall. The University Lecture Timetable
Problem (ULTP) consists of five sets: C, F, T,L, and S. Set C contains all subject instances, or course events, each having a
specific faculty and department designation, maximum student capacity, unit equivalent value, type classifications, and
feature requirements. Additionally, every course has a list of other Faculties in whose buildings it can also be scheduled if
there is no more room for it in its own designated faculty.
F is the set of all teaching personnel, each one having a minimum, maximum, and targeted unit load values as expressed in
Equation (1).
F= {F_i1,〖 F〗_i2,〖 F〗_i3…,F_ij} (1)
where, F_ij is the lecturer of the i_th department and j_th faculty, T contains the timeslot schedules classified under
multiple types expressed in Equation (2).
T = {t_1,t_2,t_3,…,t_q} (2)
T is the total number of timeslots while L is the set of all rooms or locations where course events can take place as
expressed in Equation (3).
L={r_i },where,i = 1,2,3,4,5,…. (3)

The total number of students S in each department i at each level j is expressed in Equation (4).
S ={s_i1,s_i2,s_i3…,s_ij} (4)
The problem is to assign every course event to a faculty, timeslot, and location so that the hard constraints are satisfied.

3.2 Materials and Methods
The architecture of the proposed Fuzzy ACO-based system consists of the Knowledge Base (KB) comprising the rule base,
database, constraint base, and Ontology; Inference Engine housing the ACO module and FL module; and User Interface as
depicted in Figure 1.
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Figure 1: Proposed Fuzzy-ACO Lecture Timetable Scheduling Framework

3.2.1 Ontology Modeling of Timetabling System
The ontology outlines entities, classes, instances, and their interrelationships, providing a formal and explicit specification of
the university timetabling system. By establishing a shared understanding of the environment, the system becomes more
adaptable for users. All components are interconnected and interdependent, each maintaining a complete copy of the
intelligent system. Figures 2–5 illustrate the system's modules and their interactions. The key components of the timetabling
system ontology include the department, course, student, and lecture venue

Figure 2: Student Ontology

Student

course Postgraduate

MSc Student PhD Student

Dan
Grace

Lectures

Room

Dept

Faculty

Undergraduate

Full
Time/Regular

Victor
level

500

Part time

Deborah

Reg.No.

string

Registers
for a Belongs

to aAttends

Has
subtype Has

subtype

Has a

Has
subtype

Has
subtype

Has
instance

Hold in a

Has
subtype

Has
subtype

Has instance
Has

Has
instance

Has
datatype

20/SC/CO/003

Has
instance

Has
instance



5

Figure 3: Department Ontology

Figure 4: Lecture Venue Ontology
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Figure 5. Course Ontology
3.2.2 Knowledge Base

This module permits connections to the database and keeps the registers of these connections. Employing a simple interface,
the user selects the database management system (DBMS), and a list of accessible databases is exhibited. Once a database has
been selected, a query can be made with the SQL locally and sent to the other nodes connected to the system. The primary
data collection method is used to gather information on venues, lecturers, time slots, courses, and student numbers from the
various departments in the faculty under study. The KB functions as a specialized database that collects organizes, and stores
essential timetable resources, including students, courses, departments, constraints, and lecturers. These resources often
contain ambiguities and lack tolerance for imprecision. Within the KB, a constraint base component stores all constraints
relevant to timetabling. In lecture scheduling, courses are assigned to specific classrooms and time slots within a week, while
students and lecturers are allocated accordingly to ensure classes proceed smoothly. The process of assigning resources to
satisfy constraints is systematically organized and stored in the constraint base. This constraint base is categorized into two
main types: hard constraints, which must be strictly followed, and soft constraints, which help enhance the scheduling
process.

3.2.3 ACO Algorithm and FL Modeling of Constraints
The ACO algorithm is inspired by the foraging behavior of real ants, which find the shortest path between food sources and
their nest. This method has been successfully applied to various combinatorial optimization problems. ACO relies on a
probabilistic solution construction mechanism based on stigmergy. In artificial intelligence (AI) and optimization algorithms
like ACO, stigmergy is used to coordinate agent behavior by reinforcing successful paths or solutions through virtual
pheromone updates. This mechanism enables decentralized problem-solving and emergent intelligence in complex systems.
The algorithm incorporates a pheromone trail that includes both a proportional rule and a pseudorandom rule. The
pseudorandom rule helps capture noisy and imprecise data from the Knowledge Base (KB), sort and prioritize it based on
events, and pass it to the proportional rule. The proportional rule then organizes, categorizes, and allocates the data into
appropriate storage spaces while assigning suitable timeslots. The algorithm optimizes the processed data and forwards the
refined results, now structured but lacking tolerance for imprecision, to the FL system. Figure 6 illustrates the steps required
to implement the ACO algorithm
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Input problem data 

 parameters’ setting and initialization  
 sort course(C) according to the priority of events and student sizes 
 while iteration <= max iteration do 
              for k = 1 to m do 
               create ant k (where k = 1,2,…m) 
      set timetable k is empty 
      for C = 1 to C do 
 choose timeslot (t) using pseudorandom/proportional rules 
    if ACS then update local pheromone 
    end for 
    withdraw ant 
     end for 
record best solution  
update global pheromone based on the type of ACO methods  
if Max Min Ant System then update pheromone local  
(Max-min) on the trails 
end while 
Output the best solution 

Figure 6: ACO Foraging Algorithm

Fuzzy sets help manage uncertainty and vagueness in final timetable scheduling by accommodating varying levels of
membership. Key constraints include ensuring the number of students does not exceed classroom capacity (H1), lecturers
have a minimum of 4 and a maximum of 12 working hours per week (S2), curriculum-related lectures are scheduled
consecutively (S3), and all lecturers of a course are assigned to a single classroom (S4). These constraints are categorized into
hard and soft constraints:
i. Hard Constraints
These are mandatory rules that must be followed for a valid timetable. Examples include:
H1: Lectures must be scheduled between 8:00 AM and 6:00 PM.
H2: Undergraduate lectures can last a maximum of 2 hours, while postgraduate lectures can last up to 3 hours. H3:

No lectures should be scheduled after 6:00 PM.
H4: A course must be assigned to either the first or second semester.
H5: No two courses for the same student group should overlap.
H6: Two-credit-unit courses should be taught in one session or twice a week.
H7: All lectures for the same group must be held in the same room.
H8: A lecturer and a classroom can only be assigned to one lecture at a time.
H9: Students must have at least a one-hour break between lectures.
ii. Soft Constraints
These are desirable but can be adjusted if necessary. Examples include:
S1: Students should not have only one course in a day.
S2: The number of students in a class should not exceed the classroom’s seating capacity.
S3: Students should not have to attend more than two consecutive lectures in a day.
S4: Courses should not be scheduled in the last time slot of the day.
Since real-world timetabling is complex, soft constraints may sometimes need to be relaxed to generate feasible schedules.
FOL is used in representing the timetable constraints in the KB. The FOL modeling of the hard constraints are as follows:
Let Lecture = ���, Time = ��� , Course = ���, Student = ���, Group = ���, Room = ���, Semester = �� =1, 2, Credit Unit = ����

3.2.4 FOL Modeling of Hard Constraints
∀�: ℎ���� (�, ��� − ������ �, 8 ��� ����� (�, 6)� )
∀�: ℎ�����(�, 2ℎ����)
∀�: ¬ held but_ after (L, 6 pm)

∀� ⇒ (����� �, �1 (�, �2)� )
∀2�� 2 ������ ���� ������, 2�� ⇒ ����ℎ� 2��, ��� ��� ∨ (2Cu, twice a week)

∀�, � ��ℎ������ ⇒ (������, �)
∀� ����, � ⇒ ℎ��� �, �������
∀� �������� lecture, L ⇒ attend (S (1, L))�

FOL Modeling of Soft Constraints
For modeling of the soft constraints is as follows;
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Let Lecture = ��� , Time = ��� , Course = ��� , Student = ��� , Group = ��� , Room = ��� , Semester = �� =1, 2, Credit Unit =
����
∀� �������, � ⇒ ℎ��� �, 1 ℎ��� �����
∀3��: 3 ������ ���� ������, 3�� ⇒ ����ℎ� (3�, 1 ���)(3Cu, 2day)

∃ �∀�� ����� (�, ��)
3.2.5 Rule Base and Inference Engine
The rule base contains a set of predefined rules that guide the inference engine in decision-making. These rules evaluate
various factors, such as student size, course type, venue capacity, and location, to determine the optimality of course
allocations.

a) If student size is small, the course is departmental, the venue has limited capacity, and it is located on the main
campus, then the allocation is ‘highly optimal’;

b) If student size is large, the course is departmental, and the venue is small but on the main campus, then the
allocation is ‘not optimal’;

c) If student size is very large under the same conditions, the allocation remains ‘not optimal’;
d) If student size is small, the course is university-wide, and the venue is small and on the main campus, then the

allocation is ‘highly optimal’;
e) If the student size is large, the course is university-wide, and the venue is on the main campus, the allocation is

‘moderately optimal’;
f) If student size is very large with the same conditions, the allocation is still ‘moderately optimal;

If the course belongs to a faculty and the venue is small, regardless of student size, the allocation is ‘not optimal’
a) If the student size is very small, the course is departmental, and the venue has medium capacity on the main campus,

then the allocation is ‘highly optimal’.

This component of the decision support system synthesizes constraints and rules stored in the KB, allowing logical reasoning
to produce an effective timetable.

4.0 Results and Discussion
The proposed system was developed using various tools, including MATLAB R2015a, Microsoft SQL Server Database,
and Python. The results are presented in Figures 7-8. Upon launching the timetable system, a splash screen appears,
followed by a login form. After a successful login on a form that emphasizes user authentication, requiring fields for
entering a username and password, the main form is displayed with a menu for Parameters Entry, ACO Analysis, ACO-
Fuzzy Analysis, Generated Timetable, and Exit button as shown in Figure 7.

Figure 7: Main Menu of the Proposed System

A click on the ACO analysis command displays an interface that contains timetable date, preview, print, drop all, transDate,
Description, Semester, epoch, type, hard and soft constraints, thread hold values (HT and ST), departmental timetable,
lecturer timetable, and venue and course capacity. It analyzes the generated timetable and determines the one with the
highest optimality. The departmental timetable displays the generated timetable for each of the departments in the faculty
resolving all the conflicts in the system is displayed in Figure 8.
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Figure 8: Departmental Timetable

Table 1: Crisp Values Data Analysis for Optimality of Generated Timetable
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Figure 9: Visualization of Different Constraints on the Scheduled Timetable

Figure 12: Effect of Hard Constraints (H1-H4) on Timetable Feasibility Over Epochs

Figure 13: Effect of Hard Constraints (H1-H4) on Timetable Feasibility Over Epochs
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Figure 14 shows the relationships between iterations (Epoch), hard constraints (H1-H4), soft constraints (S1-S4), and their
satisfaction (TH and TS). The Epoch generatesa slight negative correlation with most constraints.Hard constraints such as
H1 and H3 yield a moderate positive correlation of 0.32 while H3 and TH are strongly correlated of 0.71. H4, however,
operates more independently, with weaker correlations to the other constraints. For the soft constraints, there is a moderate
positive correlation of 0.30 to 0.56, with S3 and S4 showing the strongest relationship of 0.56, indicating a strong
relationship between lecturer working hours with preference foracademic staff in managerial positions. The satisfaction of
hard constraints (TH) is driven mainly by H1 of 0.60 and H3 of 0.71, while TS (total satisfaction of soft constraints) is
closely tied to S3 of 0.56 and S4 of 0.55. The moderate correlation of 0.37 between TH and TS highlights some
interdependence between hard and soft constraints. Iteration 13 yields the optimal timetable, achieving the highest TH of
0.839 and TS of 0.810.

Figure 14: Correlation Analysis of Hard and Soft Constraints

Table 2 shows the result of Fuzzy type analysis on the generated timetable that satisfies the hard and soft constraints which
produces five linguistic variables (i.e. high (H), Medium (M), Very High (VH), Low (L), and Very Low (VL). From the
analysis, the one with the highest linguistic variable is the one that satisfies the hard and soft constraints to a larger extent
and is adopted as the optimal timetable generated. Hence iteration 13 is the one that produced the optimal timetable for the
semester. Figure 15 illustrates the relationships between the hard constraints (H1–H4) and their classification based on total
hard constraints (TH) values, categorized as Very High (VH), High (H), Medium (M), Low (L), and Very Low (VL). The
density distributions along the diagonals highlight the concentration of TH values across different levels of the constraints.
A strong clustering of higher TH classifications (H and VH) is evident when H3 and H4 values are above 0.7, emphasizing
their significant influence on achieving optimal hard constraint satisfaction. Similarly, higher TH values are observed when
H1 and H2 values exceed 0.5, although their impact appears to be more complementary. The relationship between H2 and
H3 is notable, with strong clustering of VH and H classifications when both constraints exhibit high values, indicating their
interdependence. Additionally, H1 and H4 demonstrate clustering of higher TH values when H4 nears its upper limit
(above 0.8), reinforcing its critical role in satisfying hard constraints. The distribution patterns show that H1 values are
broadly spread, with peaks near 0.4 and 0.9 corresponding to Medium and High TH categories, while H2 and H3 with
sharper peaks around 0.7–0.9, aligning with higher TH classifications. H4, in particular, shows a strong concentration near
0.9 and is predominantly associated with Very High TH values. The H3 and H4 are the most influential in achieving higher
TH classifications, while H1 and H2 help in obtaining optimal lecture scheduling. Table 3 presents a comparison of the
proposed approach with previous works.
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Table 2: Fuzzy Type Analysis of Generated Timetable Schedule

TransDa
te

Descripti
on

Se
me
ster

Epo
ch Type H1 H2 H3 H4 T

H S1 S2 S3 S4 TS

1/26/20
25

2024/20
25 1 1 FUZZY 0.9

4
0.0

1
0.4

8
0.8

9 H 0.7
7

0.9
1

0.6
9

0.4
3 H

1/26/20
25

2024/20
25 1 2 FUZZY 0.3

8
0.7

8
0.7

1
0.3

4 M 0.1
6

0.2
2

0.7
3

0.6
7 L

1/26/20
25

2024/20
25 1 3 FUZZY 0.4

5
0.8

4
0.7

2
0.2

5 H 0.8
9

0.7
3

0.6
8

0.0
2 M

1/26/20
25

2024/20
25 1 4 FUZZY 0.0

8
0.1

9
0.4

9
0.3

7 L 1.0
0

0.7
1

0.1
2

0.5
1 M

1/26/20
25

2024/20
25 1 5 FUZZY 0.8

1
0.6

7
0.3

9
0.0

7 M 0.6
1

0.5
9

0.0
8

0.5
9 L

1/26/20
25

2024/20
25 1 6 FUZZY 0.1

4
0.7

4
0.8

9
0.4

5 H 0.9
4

0.3
6

0.6
5

0.0
1 L

1/26/20
25

2024/20
25 1 7 FUZZY 0.6

2
0.5

5
0.6

8
0.0

3 M 0.8
2

0.4
6

0.9
3

0.9
5 H

1/26/20
25

2024/20
25 1 8 FUZZY 0.6

6
0.0

7
0.4

3
0.8

7 M 0.9
1

0.8
2

0.6
8

0.6
3 H

1/26/20
25

2024/20
25 1 9 FUZZY 0.0

7
0.1

2
0.2

9
0.5

8 VL 0.6
1

0.7
5

0.4
4

0.4
4 M

1/26/20
25

2024/20
25 1 10 FUZZY 0.1

2
0.8

9
0.1

5
0.4

6 L 0.2
2

0.9
1

0.5
4

0.6
8 M

1/26/20
25

2024/20
25 1 11 FUZZY 0.5 0.0

8
0.8

2
0.3

6 L 0.7
8

0.7
1

0.8
9

0.6
2 H

1/26/20
25

2024/20
25 1 12 FUZZY 0.7

2
0.2

5
0.0

6
0.1

1 L 0.3
2

0.6
6

0.7
7

0.1
5 L

1/26/20
25

2024/20
25 1 13 FUZZY 0.9 0.9

3
0.7

1
0.8

1
V
H

0.6
7

0.8
3

0.9
5

0.7
9

V
H

1/26/20
25

2024/20
25 1 14 FUZZY 0.4

5
0.4

6 0 0.5
8 L 0.4

5
0.3

7
0.1

9
0.0

9
V
L

1/26/20
25

2024/20
25 1 15 FUZZY 0.9

5
0.3

9
0.9

1
0.2

9 H 0.1
5

0.5
1

0.7
8

0.3
7 L

1/26/20
25

2024/20
25 1 16 FUZZY 0.4

2
0.3

8 0.3 0.5
8 L 0.4 0.4

1
0.1

7
0.7

4 L

1/26/20
25

2024/20
25 1 17 FUZZY 1 0.2

7
0.8

1
0.2

9 H 0.1
1

0.3
9

0.9
9

0.8
1 M

1/26/20
25

2024/20
25 1 18 FUZZY 0.0

5
0.9

7
0.4

9
0.3

5 M 0.9
5 0.8 0.1 0.2

1 L

1/26/20
25

2024/20
25 1 19 FUZZY 0.1

3
0.8

9
0.0

5
0.3

4 L 0.2
7

0.8
8

0.7
4

0.3
4 M

1/26/20
25

2024/20
25 1 20 FUZZY 0.4 0.2

8
0.0

5
0.7

1 L 0.4
8

0.6
8

0.4
5

0.1
1 L
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Figure 15: Pair-wise Relationships of Hard Constraints (H1–H4) with TH Classification

The table 3 gives the summary of the comparison of the existing work with the proposed ACO-FL timetabling models.

Table 3. Comparison of the Fuzzy ACO Approach with Existing Works

Reference Method Weakness ACO-FL
[13] Modified

Quicksort
Lacks adaptability to preferences It incorporates user

constraints
[14] Integer

Programming
Poor uncertainty handling It adapts to dynamic

constraints
[15] Fuzzy Heuristic Resource omission, venue

clashes
It ensures structured
allocation of resources

[20] PSO Prone to premature convergence It avoids premature
convergence

[21] Logical
Scheduling

Rigid framework It offers more flexibility
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5.0 Conclusion

The study presents a hybrid approach utilizing ACO, FL, and Ontology to tackle the complexities of university
lecture timetabling. By integrating CLP, the system incorporates both hard and soft constraints to optimize
scheduling, enhance resource utilization, and minimize clashes and delays. The study emphasizes the role of FL
in reducing uncertainties within the search space, thereby improving the performance of the ACO algorithm.
Scatter plot analysis illustrates the dynamic behavior of hard constraints over time, with H3 and H4
demonstrating the highest stability and impact in achieving optimal satisfaction levels. The hybrid fuzzy-ACO-
based system proves more effective in handling classroom constraints compared to existing methods, resulting
in more efficient and optimized timetabling. This system design contributes significantly to higher education by
promoting better knowledge assimilation, minimizing lecture delays, and enhancing overall academic
performance.
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