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Abstract: Accurate path loss modelling is critical for optimizing LTE network coverage and performance, 

particularly in maritime environments where conventional models often struggle to provide precise estimations 
due to dynamic environmental conditions. This study presents a hybrid path loss model that integrates machine 

learning (ML) with traditional empirical models using a regression-based fusion technique. The proposed 

approach enhances prediction accuracy by dynamically adjusting model coefficients based on real-time 

environmental factors. A case study of the Escravos water in Delta State, Nigeria, demonstrates the model's 

effectiveness compared to standard empirical models such as COST-231 and Okumura-Hata. The results indicate 

significant improvements in prediction accuracy, with a reduced mean squared error (MSE) and enhanced 

adaptability to environmental variations. The findings suggest that the proposed decision tree particle swarm 

optimization (DT-PSO-COST231) path loss model can serve as a valuable tool for LTE network planning in 

maritime environments. 
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1. Introduction 

Reliable LTE network coverage is vital in maritime environments, as it ensures effective communication, accurate 

navigation, and prompt emergency operations. However, signal propagation over the open sea can be 

unpredictable, influenced by various factors such as multipath fading, atmospheric ducting, and humidity-induced 

attenuation . Conventional path loss models, such as Okumura-Hata and COST-231, provide baseline estimates 

for terrestrial scenarios but often fall short in maritime situations due to the unique signal behaviours that occur 

over water surfaces. (Akinyemi et al., 2023). 

The dynamics of signal propagation over water differ significantly from those on land due to the reflective 

properties of water surfaces, which enhance multipath effects and lead to fluctuations in the received signal 

strength. Additionally, atmospheric conditions such as temperature inversions can extend radio signal ranges 

beyond typical diffraction limits, making predictions more complex (ITU-R P.452-16, 2015). Existing models, 

such as Okumura-Hata and COST-231, do not fully account for these complexities, resulting in inaccuracies in 

maritime environments. (Wang et al.,2015). Several models, including Okumura-Hata, COST-231, and ITU-R, 

have been developed to predict signal loss in both land and sea environments. However, these models often 

overlook specific variations that occur in maritime settings. Recent studies have investigated machine learning 

(ML) techniques to enhance prediction accuracy. Relying solely on ML models may limit their general 

applicability. Combining ML with empirical models could lead to more precise predictions (Brekke et al., 2018). 
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Hybrid models that integrate empirical models with ML-based adjustments have shown better results. These 

models dynamically adjust their predictive weights based on changing environmental conditions, leveraging the 

robustness of empirical models and the adaptability of ML techniques (Andreas et al., 2012). In this study, we 

introduce a hybrid path loss model that combines ML-driven predictions with empirical models using a regression-

based fusion technique. Our approach enhances LTE path loss estimations for maritime environments.  

This research focuses on Escravos, Delta State, Nigeria, as a case study to validate the effectiveness of our hybrid 

model. By comparing it to traditional models, we aim to demonstrate the advantages of incorporating machine 

learning techniques for achieving more accurate signal predictions in maritime conditions. To ensure accurate 

measurements, we employed state-of-the-art equipment, including: a Weather Station (WS) is set up to monitor 
various meteorological parameters, including temperature, humidity, wind speed, and atmospheric pressure. A 

Global Positioning System (GPS) provides accurate geolocation data. The setup includes a Samsung Galaxy S5 

smartphone, which features a built-in Transmission Evaluation Monitoring System (TEM POCKET) for assessing 

mobile signal quality. Additionally, TEMS 15.2.2 investigation software is installed on a Core i5 Dell laptop for 

comprehensive data analysis. Both the weather parameter and the signal measurement were taken simultaneously. 

Field measurements were conducted during both wet and dry seasons, capturing environmental variations 

affecting signal transmission. (Doggett et al., 2017) 

This research improves path loss modelling by combining machine learning techniques with empirical models, 

enhancing adaptability to real-time environmental changes. The findings aim to strengthen network planning 

strategies for LTE coverage in maritime environments, providing a more reliable framework for 

telecommunications engineers and policymakers. 

1.1 Literature Review 

The literature review offers a thorough overview of current research on path loss models in maritime 

environments, critically assessing the methodologies used and their limitations. By examining the strengths and 

weaknesses of various approaches, this section emphasizes the necessity for a more robust predictive model that 

integrates both machine learning and empirical techniques. 

1.1.1 Empirical and Semi-Deterministic Models for Path Loss Prediction 

Several path loss models have been developed for both terrestrial and maritime environments. Zhu et al. (2010) 

combined experimental data with theoretical modelling to create a tool for predicting radio wave propagation loss 
at sea. Their findings indicate that as the distance exceeds the line of sight (LoS), the model's accuracy decreases. 

This highlights the necessity for a predictive model that effectively accounts for both LoS and non-line-of-sight 

(NLoS) conditions in maritime environments.Wang et al. (2023) proposed a semi-deterministic model that 

integrates the ITU path loss model with geometric calculations to address signal reflections and diffractions. While 

this model effectively predicts transitions between LoS and NLoS conditions, it does not take atmospheric 

parameters into account. Despite this limitation, validation against channel measurement data demonstrated its 

accuracy in harbour scenarios. 

1.1.2 Machine Learning Approaches to Path Loss Modelling 

Recent studies have investigated machine learning (ML) techniques to enhance the accuracy of path loss 

predictions. Shen et al. (2022) developed a neural network model trained on simulated data to predict maritime 

path loss. This model incorporates parameters such as wind speed and antenna height to improve its accuracy. 

However, key atmospheric factors—such as temperature, humidity, and seasonal variations were not considered. 

Despite these limitations, the proposed backpropagation (BP) neural network model achieved a high coefficient 

of determination (R² > 0.92), significantly outperforming traditional models. This indicates the potential of ML 

to refine path loss predictions. In another study, Ahmed et al. (2024) introduced a novel data augmentation method 

to enhance ML-based path loss predictions. Their approach combined synthetic data from a cellular coverage 

simulator with real-world datasets collected from various environments, including farms and residential areas. By 

engineering channel features using Lidar-derived geographical attributes and employing a gradient-boosting 

algorithm, they significantly reduced the mean absolute error by approximately 12 db. These findings suggest that 
incorporating synthetic data can improve the adaptability and performance of ML models across different 

scenarios. 

1.1.3 Hybrid Path Loss Models and Adaptive Techniques 
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Imoize et al. (2021) studied an adaptive path loss model for LTE mobile broadband networks operating at 2630 

MHz, utilizing TEMS investigation tools. They improved the traditional Egli model by incorporating the 

Levenberg-Marquardt algorithm to tackle nonlinear propagation challenges. The enhanced model outperformed 

the standard version in various test locations, showcasing the effectiveness of adaptive modelling techniques. This 

literature review highlights the limitations of traditional path loss models and the benefits of using machine 
learning (ML) approaches. While ML methods have shown improved accuracy, their reliance on large datasets 

and the need for specific environmental conditions limit their effectiveness when used alone. To address these 

limitations, this study proposes the development of a hybrid path loss model that combines empirical models with 

ML-driven optimizations. The goal is to enhance prediction accuracy in maritime LTE networks and fill the 

existing gaps in the literature. 

1.2 THEORETICAL BACKGROUND 

1.2.1 Okumura-Hata Model  

The COST-231 is an empirical model extended from the Okumura-Hata model for higher frequency scenarios, 

and it is expressed thus: (Isabona et al., 2021).  

𝑃𝐿 = 69.55 + 26.16𝑙𝑜𝑔10(𝑓𝑐) − 13.82𝑙𝑜𝑔(ℎ𝑏1) − (𝑎ℎ𝑚) +       

  (44.9 − 6.55log(ℎ𝑏1))𝑙𝑜𝑔10(𝑥)                                                                                                                       (1)                                                                                                                                           

                     𝑎ℎ𝑎=3.2(log(11.75ℎ𝑎))2−4.97                                                                                                            (2) 

where,  

PL=pathloss in decibel(dB)  

f=frequency in Gigahertz (GHz), hb=Base station antenna height in meters(m) hm=Mobile station antenna height 

in meters(m).  

d= Distance between transmitter and receiver antennas in meters(m), ahm = mobile station antenna correction 

height.  

1.2.2 Cost231 Model  

The COST 231 model uses empirical and deterministic methods for path loss estimation :        

𝑃𝐿 = 43.6 + 33.9𝑙𝑜𝑔10(𝑓𝑐) + (44.9 − 6.55𝑙𝑜𝑔10(ℎ𝑏1)) log(𝑋) − 13.82𝑙𝑜𝑔10(ℎ𝑏1) − 𝑎ℎ𝑚 −

2(𝑙𝑜𝑔10 (
𝑓𝑐

28
))2 − 𝐶𝑚)                                           (3)     

                                                                                                                                                                                  

where,  

PL=pathloss in decibel(dB) f = frequency in (MHz)  

X = Distance between transmitter and receiver antennas in meters (m) hb = Base station antenna height in meters 

(m) hm=Mobile station antenna height in meters (m)=1.5m  

Cm =5.4dB for the maritime environment ahm= ahm = 3.2(log10(11.75hm))2- 4.97 (Mobile antenna height 

correction factor)  

 

1.2.3 ITU-R M2414 MODEL  

The ITU-R M.2414 model is a key standard in telecommunications for predicting path loss, especially in 5G 

networks. It is part of the International Telecommunication Union's recommendations and ensures reliable 

communication in diverse scenarios such as Urban Macro, Urban Micro, indoor hotspots, and maritime 
environments. The model accounts for environmental factors like Line-of-Sight (LoS) and Non-Line-of-Sight 

(NLoS) conditions, offering realistic signal propagation insights. It covers a broad frequency range from 100 MHz 

to 100 GHz, which is essential for millimetre-wave communications in 5G. Under the ITU-R M.2414 model, the 

primary path loss (PL) formula is expressed as:  

𝑃𝐿 = 22.7 + 26𝑙𝑜𝑔10(𝑓𝑐) + 36.7𝑙𝑜𝑔10(𝑋) − 𝐶                                                               

(4)                                                                                                              

where:  
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X, f, and C represents the distance between the transmitter and receiver in meter, the frequency in MHz and C 

accounts for a correction factor that accommodates specific environmental conditions  

ITU-R M.2414 is a comprehensive model incorporating various real-world factors into path loss predictions, 

making it a cornerstone in designing next-generation wireless communication systems.   

From the measured RSRP, signal loss values were calculated using (Rappaport, 2002 & Seybold, 2005):    

     𝑃𝐿(𝑑𝐵) = 𝐸𝐼𝑅𝑃(𝑑𝐵𝑚) − 𝑅𝑆𝑅𝑃(𝑑𝐵𝑚)                                                                                                               ( 
5)                                                                                                        

where EIRP is the adequate isotropic radiated power expressed as; 

𝐸𝐼𝑅𝑃 = 𝑃𝑡 + 𝐺𝑟 +𝐺𝑡 − 𝐿𝑟 − 𝐿𝑡    (6)                                                                                                                                       

                                                                                                                                                           

where 𝑎𝑎 and 𝑎𝑎 are the receiver and transmitter antenna gains, respectively, 𝑎𝑎 and 𝑎𝑎 are transmitter and 

receiver cable losses in dB, and Pt is transmitter power.  

Then Eqn (5) is expressed as 

 𝑃𝐿 = 𝑃𝑡 +𝐺𝑟 +𝐺𝑡 − 𝐿𝑡 − 𝐿𝑟(𝑑𝐵𝑚) − 𝑅𝑆𝑅𝑃(𝑑𝐵𝑚)                                                                                             (7)                                                                        

 

1.3 Model Formulation: 

 The COST 231-Hata model is divided into offset (P1), system (P2) parameter, and the slope (P3). 

 Hence, from equation 3 the formulation of the adaptive model for the Cost231 model was deduced as follows: 

The COST-231-Hata model is initially computed using the given formulas: 

 Offset parameters, P1 = 46.3 − 13.82 log(ℎt) − 𝑎(ℎr) + 𝑎𝑎                     (8)                                              

 Slope of the model curve, P2 = [44.90 − 6.550 log(ℎt )]log(d)               (9) 

System design parameter, P3 = 33.9 log(𝑎)                                                                                                 (10) 

Therefore;  

 PLcost (dB) = P1 + P2log (d) + P3 log (f)                                                                                                 (11) 

where ht, a(hr) and Cm indicate the base station height, mobile station correction factor, and the environmental 

correction factor, with P1, P2, and P3 parameters typically fixed in COST-231.  

Gradient Boosting Regression (GBR) is employed to optimize the fixed parameters of the COST231 

model. 

The objective of Gradient Boosting Regression (GBR) is to identify the optimal values of P1, P2, and P3 that 

minimize the discrepancy between the measured path loss (PL measured) and the predicted path loss. Instead of 

using fixed values for these parameters, we enable GBR to obtain a new value which is most effective for the 

terrain. This is achieved through the following approach: The GBR model learns the correlation between measured 

path loss and COST-231 predictions. Each new tree added to the gradient boosting model is designed to mitigate 

residual errors by dynamically updating the parameters. The GBR fine-tunes the weight of each parameter to 

improve overall accuracy. 

1.3.1 Fusion Model Equation 

The fusion model modifies COST-231 parameters by integrating decision tree particle Swarm Optimization 

(DT-PSO)  predictions. This is achieved through a regression model that minimizes the error between the 

predicted and measured path loss which in turn optimize the COST231 parameters. 
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𝑃𝐿(𝑓𝑢𝑠𝑒𝑑) = 𝑤1𝑃𝐿(𝐶𝑂𝑆𝑇231) + 𝑤2𝑃𝐿(𝐷𝑇 − 𝑃𝑆𝑂) + 𝑏                                (12) 

where: 

PL(fused) , PL(COST231)  and PL(DT-PSO difine the Final fused path loss.,  Path loss predicted by COST-231 and the 

Path loss predicted by DT-PSO. 

The fusion model equation after optimization becomes: 

𝑃𝐿(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑) = 𝑃1
1 + 𝑃2

1log(𝑑) + 𝑃3
1log(𝑓)                                                          

(13) 

where: 𝑃1
1, 𝑃2

1, 𝑃3
1 are the optimized adjustable parameters learned from GBR.             

 MATERIALS AND METHODS 

2.1 Experimental Site and Data Collection. 

The study was conducted in Delta State, Nigeria, focusing on the Escravos waters. A total of eighty transmission 
stations were surveyed for signal strength across four maritime locations: the Okerenghigho River, Opuraja River, 

Ogidigben River, and Escravos River. The examined environments included linear settlements, freshwater and 

saltwater bodies, shipyards, islands, and dense mangrove forests. The survey spanned 22.46 NM (42.34 km) in 

the Old Forcados River, covering an area of 1,542 km², and was bounded by the coordinates 5°00.151'N, 5°45'E 

and 5°04.5'N, 5°15'E. The significance of these locations is underscored by their economic value and distinctive 

geographical conditions, which may affect network performance. 

 

Fig. 1 Map of the  surveyed Areas (Landsat Copernicus data, 2015)  

 

2.2 Methodology  

The survey collected data from July 2021 to November 2023, measuring a signal transmitted at 800 MHz using 

LTE 4G technology provided by AIRTEL Nigeria. A handheld weather station and data from the Nigerian 

Meteorological Agency (NIMET) were used to monitor atmospheric parameters like temperature, humidity, wind 

speed, and pressure. RSRP measurements were taken at 0.02 km intervals with TEM pocket equipment 

simultaneously with the weather parameters while travelling at an average speed of 20 km/h on a speedboat. Data 

was transferred to a laptop  pre-installed with Transmission Evaluation Monitoring System (TEMS) software 

version 15.2.2. Simulations utilized the conventional radio-wave propagation model (Okumura-Hatta), ITU, and 

the proposed Hybrid Machine Language Algorithm (HMLA), which combines the Decision Tree Algorithm, 
Particle Swarm Optimization, and the Cost231 model using the Gradient Boosting Regression (GBR). The 

Cost231 was choosing based on its best RMSE prediction against other tested models. The machine learning 

technique builds an ensemble of weak learners (decision trees) to correct prediction errors progressively. It is 

well-suited for fusing the DT-PSO model with COST-231 to enhance path loss prediction accuracy. A link budget 

computation and performance assessment were performed using first-order statistical indicators; Mean Absolute 
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Error (MAE), Standard Deviation (STD), MEAN Absolute Percentage Error (MAPE), Root Mean Square (RMSE) 

and the coefficient of determination (R2). 

3.Results 

Table1: Optimized Cost231 parameters   from the Research Locations 

Location P1
1 P1

2 P1
3 

Ogidigben River 549.78 24.42 -141.96 

Okerenghigho River 501.72 29.52 -127.47 

Escravos River 179.66 26.34 -16.57 

Opuraja River -150.62 28.77 92.97 

Mean 270.14 27.26 -48.26 

From equation (13); 

 PL (dB) = P1
1 + P1

2log (d) + P1
3 log (f)    

Therefore, 

 PL(optimized) (dB) = 270.14+27.26log(d)-48.26(fc)                                                           (14) 

         Table 2:   Measured and Predicted Pathloss values. 

Km COST231 

dBm 

OKUMURA 

dBm 

ITU-RM2414 

dBm 

MEASURED 

dBm 

DT-PSO-

COST231 Model 

dBm 

0.32 99.67614 86.556578 79.880 119.0642 133.949512 

0.34 101.2072 88.087651 68.815 119.0642 134.675401 

0.36 102.5989 89.479333 87.846 119.0642 135.359787 

0.38 103.8745 90.754902 66.959 119.0642 136.007161 

0.40 105.0518 91.932249 86.139 119.0642 136.621321 

0.42 106.1450 93.025425 85.379 120.9705 137.205510 

0.44 107.1652 94.045667 84.669 127.1618 137.762517 

0.46 108.1217 95.002101 84.003 130.1611 138.294760 

0.46 109.0218 95.902241 83.377 129.2163 138.294760 

0.48 109.8719 96.752346 72.785 129.2163 138.804348 

0.50 110.6772 97.557688 72.225 131.7452 139.293130 

0.52 111.4423 98.322745 61.693 132.7440 139.762739 

0.54 112.1709 99.051357 61.186 132.7440 140.214623 

0.56 112.8664 99.746839 60.702 133.0028 140.650071 

0.58 113.5316 100.41207 70.239 133.0028 141.070237 

0.60 114.1691 101.04958 99.795 126.3327 141.476157 

0.62 114.7811 101.66158 89.370 126.3327 141.868766 

0.64 115.3696 102.25004 99.960 126.3327 142.248909 

0.66 115.9363 102.81669 98.566 131.0002 142.617353 

0.68 116.4827 103.36311 88.186 143.2997 142.974798 

0.70 115.0102 103.89067 77.819 132.7837 143.321880 
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           Fig 2: proposed hybrid model compared with the conventional models 

Table 3: Precision Fitting Table for All Models 

KPI COST-231 OKUMURA ITU-R-M2414 DT-PSO-

COST231 

MAE (Mean Absolute Error) 17.91 dB 30.94 dB 47.70 dB 11.51 dB 

STD (Standard Deviation) 3.84 3.87 14.29 4.45 

MAPE (Mean Absolute Percentage 

Error) 

13.98% 24.21% 37.15% 9.20% 

RMSE (Root Mean Square Error) 18.32 dB 31.18 dB 49.80 dB 12.34 dB 

Coefficient of Determination (R2) 0.943836 0.894175 0.827348 0.99887 

 

Fig. 3: Best fit line showing a correlation between path loss of the proposed model and the measured 

value. 

4.1 Discussion  

The results shown in Table 3 provide a detailed comparison of the performance of various path loss models, 

specifically focusing on COST-231, Okumura, ITU-R M2414, and the proposed hybrid model (DT-PSO-

COST231). It was found that the hybrid DT-PSO-COST231 model exhibits the lowest error rates across all 

metrics (MAE: 11.51 dB, RMSE: 12.34 dB, MAPE: 9.20%, and R²: 0.99887), indicating that it offers the best 

approximation to the measured values. The COST-231 model ranks second but still has higher errors than DT-

PSO-COST231 (MAE: 17.91 dB, RMSE: 18.32 dB, R²: 0.943836). In contrast, the ITU-R M2414 model shows 

the highest error rates, making it the least reliable option in this dataset, with an MAE of 47.70 dB and an RMSE 

of 49.80 dB. This observation aligns with findings in the literature; Zhu et al. (2010) noted that standard models 

face difficulties predicting path loss in non-line-of-sight (NLoS) conditions, similar to the elevated errors seen in 
the ITU-R M2414 in this study. Additionally, research by Shen et al. (2022) has demonstrated that machine-
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learning models can outperform empirical models by adapting to varying environmental conditions. The DT-PSO-

COST231 model adheres to this trend, showcasing enhanced accuracy. Furthermore, the results from Ahmed et 

al. (2024) support the notion that combining machine learning techniques with existing models significantly 

improves prediction accuracy, reinforcing the integration of DT-PSO with COST-231 in this study. 

5. Conclusion 

This study evaluated the effectiveness of conventional path loss models, including COST-231, Okumura, and 

ITU-R M2414, in predicting LTE signal propagation in maritime environments. The results showed that these 

models are not accurate enough for this application due to the complex and dynamic nature of maritime settings. 

To address these limitations, the study introduced a hybrid model called DT-PSO-COST231, which combines 

machine learning techniques with empirical models to improve prediction accuracy. The DT-PSO-COST231 

model significantly enhances the accuracy of path loss predictions compared to traditional models. It achieved 

lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values, demonstrating superior 

performance in maritime network planning. These results confirm that integrating machine learning with empirical 
path loss models provides better adaptability to varying environmental conditions, leading to more reliable LTE 

coverage predictions in maritime settings. Integrating machine learning into path loss modeling presents new 

opportunities for optimizing LTE network planning. The proposed model enhances real-time adaptability, which 

is crucial for maritime communication systems. The research findings can assist telecommunications engineers 

and network operators in creating more accurate coverage models for coastal and offshore environments. 

Ultimately, this advancement will improve connectivity for maritime operations, emergency response, and 

navigation. By increasing the accuracy of path loss predictions, this study contributes to the efficient deployment 

of LTE networks in maritime regions, helping to reduce costs related to ineffective network planning and signal 

loss. Additionally, the hybrid model can be adapted for future wireless communication technologies, including 

5G and beyond, making it relevant for evolving network infrastructures. 
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