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Abstract: Accurate prediction of signal propagation loss is paramount for efficient planning,
deployment, and optimization of cellular communication networks. Traditional methods, ranging from
empirical models to deterministic ray tracing, often suffer from limited adaptability, high
computational complexity, or require extensive site-specific calibration. The advent of Artificial
Intelligence (AI) and Machine Learning (ML) has revolutionized this domain, offering data-driven,
adaptive, and highly accurate solutions for predicting continuous values like propagation loss—a
classic regression problem. This paper provides a comprehensive review of Al techniques applied to
the predictive regression learning of signal propagation loss in cellular networks. We examine the
evolution from conventional ML algorithms like Support Vector Machines and Ensemble Methods to
advanced Deep Learning (DL) architectures such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Graph Neural Networks (GNNs). The review categorizes
existing approaches based on their underlying AI methodologies, discusses their strengths and
limitations, and highlights the crucial aspects of data feature engineering and model training.
Furthermore, we identify key challenges, including model interpretability, generalization across diverse
environments, and computational overhead. Finally, we explore promising future research directions,
such as hybrid physics-informed Al models, federated learning, explainable AI (XAI), and the
integration of digital twin technology, all of which aim to enhance the robustness, accuracy, and
deployability of Al-driven propagation loss prediction for future 5G and 6G cellular ecosystems.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Regression, Signal Propagation
Loss, Path Loss, Cellular Networks, Wireless Communication, 5G, 6G.

1. Introduction

The rapid proliferation of wireless communication devices and the insatiable demand for high-speed,
low-latency connectivity have made cellular networks indispensable to modern society. The
performance, coverage, capacity, and Quality of Service (QoS) of these networks are fundamentally
governed by how radio signals propagate through various environments. Signal propagation loss, often
referred to as path loss, quantifies the attenuation of signal strength as it travels from a transmitter (e.g.,
a base station) to a receiver (e.g., a mobile device). Accurate prediction of this loss is a cornerstone for
critical network tasks, including base station placement, antenna tilt optimization, interference
management, handover optimization, and dynamic resource allocation [1].

Historically, predicting signal propagation loss has relied on a variety of methods. Empirical models,
such as Okumura-Hata and COST 231-Hata, provide generalized formulas derived from extensive
measurements, offering simplicity but often lacking site-specific accuracy [2]. Deterministic models,
like ray tracing, leverage the geographical and structural details of an environment to simulate signal
paths, achieving high accuracy but at the cost of immense computational power and the need for highly
detailed 3D environmental data [3]. Other approaches, including hybrid models, attempt to combine the
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strengths of empirical and deterministic methods. Despite their utility, these traditional techniques face
inherent limitations: empirical models are often calibrated for specific environments and frequencies,
leading to poor generalization; deterministic models are computationally prohibitive for large-scale,
dynamic networks; and all often struggle to adapt to rapidly changing urban landscapes, mobile users,
and evolving network technologies (e.g., millimeter-wave frequencies in 5G and sub-THz in 6G).

The emergence of Artificial Intelligence (Al) and Machine Learning (ML), particularly Deep Learning
(DL), offers a paradigm shift in addressing these challenges. Al-driven approaches are inherently data-
driven, capable of learning complex, non-linear relationships directly from measurement data or high-
fidelity simulations. This ability allows them to model intricate propagation phenomena that are
difficult to capture with predefined mathematical equations, adapt to diverse environments, and
potentially offer a more flexible and accurate prediction framework for the continuous value of
propagation loss [4].

This paper provides a detailed review of the application of Al for predictive regression learning of
signal propagation loss in cellular communication networks. Our primary focus is on how various Al
models are trained to output a continuous value representing the loss, given a set of input features. We
aim to:

e Contextualize the problem of signal propagation loss prediction within cellular networks and
highlight the limitations of traditional methods.
Introduce the fundamental AI/ML techniques relevant for regression learning.
Systematically review the state-of-the-art Al-based approaches, categorizing them by their
underlying methodology (e.g., classic ML, ANNs, CNNs, RNNs, GNNs) and discussing their
specific contributions and applicability to this problem.

e Analyze the challenges associated with deploying Al for propagation loss prediction, including
data issues, interpretability, and generalization.

o Identify promising future research directions that can further enhance the accuracy, robustness,
and practicality of Al-driven solutions for upcoming wireless generations.

The remainder of this paper is structured as follows: Section 2 provides background on signal
propagation loss. Section 3 introduces the fundamentals of AI/ML for regression. Section 4 offers a
comprehensive review of Al-based prediction approaches. Section 5 discusses current challenges, and
Section 6 outlines future research directions. Finally, Section 7 concludes the paper.

2. Background on Signal Propagation Loss

Signal propagation loss, also known as path loss, quantifies the reduction in radio signal strength
between a transmitter and a receiver. It is a fundamental parameter that directly impacts the received
signal power, and consequently, the achievable data rates, coverage area, and overall network
performance.

2.1. Mechanisms of Propagation Loss Radio signals attenuate due to several physical phenomena as
they travel through space:

o Free-Space Loss: This is the most basic form of attenuation, occurring even in a vacuum. It is
proportional to the square of the distance and the square of the frequency. The Friis transmission
equation provides the theoretical free-space path loss.

e Reflection: Occurs when a radio wave encounters an object with large dimensions compared to
its wavelength (e.g., large buildings, ground). The wave bounces off the surface.

e Diffraction: Occurs when a radio wave encounters an obstruction with sharp edges. The wave
"bends" around the obstacle, allowing signals to propagate into shadowed areas, albeit with
significant attenuation.

e Scattering: Occurs when a radio wave encounters objects with dimensions comparable to or
smaller than its wavelength (e.g., foliage, street furniture, rough surfaces). The energy is spread
in multiple directions.

e Absorption: Energy is absorbed by materials (e.g., walls, human bodies, atmospheric gases like
oxygen and water vapor), converting electromagnetic energy into heat.
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2.2. Factors Influencing Propagation Loss The magnitude of signal propagation loss is influenced by

a multitu

(@]

de of factors, making its accurate prediction complex:

Distance: Generally, loss increases logarithmically with distance.

Frequency: Higher frequencies experience greater free-space loss and are more susceptible to
absorption, diffraction, and blockage by obstacles. This is particularly relevant for 5G
millimeter-wave (mmWave) and future sub-THz bands.

Environment:

Urban: Dense buildings, high clutter (vehicles, people) lead to significant reflection,
diffraction, and scattering.

Suburban: Less dense buildings, more open areas, foliage.

Rural: Open terrain, fewer obstacles, but terrain undulations can be significant.
Indoor/Outdoor: Indoor environments introduce additional wall penetration losses.

Antenna Heights: Higher transmitter and receiver antennas generally reduce path loss due to
fewer obstructions and clearer line-of-sight (LOS) paths.

Clutter: Presence of trees, foliage, street furniture, and other small-scale objects.

Weather Conditions: Rain, fog, and humidity can significantly attenuate signals, especially
at higher frequencies.

Building Characteristics: Material type, density, and height of buildings.

2.3. Traditional Path Loss Models Traditional models can be broadly categorized as:

Empirical Models: Based on extensive measurement campaigns and statistical fitting.

Free-Space Path Loss (FSPL): A theoretical baseline, only valid for LOS in a vacuum.
Log-Distance Model: A simple extension of FSPL, incorporating an average path loss
exponent.

Okumura-Hata and COST 231-Hata: Widely used for macrocell environments, but
developed for specific frequency ranges (e.g., 150-2000 MHz) and environmental types.
They assume a general environment and are less accurate for specific deployments or new
frequency bands (e.g., mmWave).

Advantages: Simple, fast, low computational cost.

Disadvantages: Limited accuracy, poor generalization outside their calibrated
environments, and lack of adaptability to dynamic changes.

Deterministic Models: Rely on electromagnetic theory and detailed environmental databases.

Ray Tracing/Launching: Simulates the propagation of individual rays, accounting for
reflection, diffraction, and scattering based on 3D building models and terrain data.
Advantages: High accuracy, can model complex environments.

Disadvantages: Extremely high computational complexity, requires detailed and
expensive 3D geographical data, not suitable for real-time dynamic networks.

Hybrid Models: Combine aspects of empirical and deterministic approaches to balance
accuracy and computational efficiency. However, they often inherit some limitations of their
constituent methods.

The limitations of these traditional models, particularly in the context of dense urban deployments,
varied network scales (macro, micro, pico, femto), and the dynamic nature of 5G and 6G networks,

undersco

re the need for more adaptive and accurate prediction methodologies. This is where Al and

ML offer a compelling alternative.

3. Fundamentals of AI/ML for Regression Learning
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Regression analysis in Machine Learning is a supervised learning task focused on predicting a
continuous output variable based on one or more input features. In the context of signal propagation
loss, the input features could include anything from distance and frequency to geographical coordinates
and environmental characteristics, while the output is the continuous value of path loss in dB. Shown in
table 1 is the comparison of the general Al regression based techniques for signal propagation loss
prediction.

Table 1: Comparison of Al techniques for signal propagation loss prediction

Al Technique Prediction Accuracy | Computational Complexity
Regression Analysis | Moderate Low

Machine Learning High Moderate

Deep Learning Very High High

From the table, it is evident that DL algorithms outperform other Al techniques in terms of prediction
accuracy. However, they also have higher computational complexity, which may limit their
applicability in real-time scenarios.

3.1. Supervised Learning Paradigm In supervised learning, an algorithm learns from a labeled
dataset, where each instance consists of input features (f{x}) and a corresponding target output f{y}).
The goal is to learn a mapping function:

0=5 7, y—Axb)]? (1)
0=5 L, qe0? @)
where.

qoO=y~fx;b) (3)
and

b=(by,b,,bs, b, bs) @)

The learning process involves minimizing a loss function in equation to minimize the Mean Squared
Error (MSE) that quantifies the difference between the predicted and actual values.

3.2. Traditional Machine Learning Algorithms for Regression Several classic ML algorithms have
been successfully applied to regression problems, including propagation loss prediction:

e Linear Regression: A foundational model that assumes a linear relationship between input
features and the target variable. While simple, it often serves as a baseline and can be effective
when relationships are approximately linear. Polynomial regression extends this by fitting a
polynomial function.

e Support Vector Regression (SVR): An extension of Support Vector Machines (SVMs) for
regression. Instead of finding a hyperplane that separates classes, SVR finds a hyperplane that
best fits the data points within a specified margin of tolerance ($\epsilon$-insensitivity zone). It
is powerful for non-linear relationships using kernel functions (e.g., Radial Basis Function -
RBF) and is robust to outliers [5].

e Decision Trees (DTs): A non-parametric model that partitions the feature space into a set of
rectangular regions. For regression, the prediction in each region is the average of the target
values of the training points falling into that region. DTs are intuitive but can be prone to
overfitting.

e Ensemble Methods: Combine multiple individual models to improve overall accuracy and
robustness.

o Random Forests (RF): Builds an ensemble of decision trees, each trained on a
bootstrapped sample of the data and a random subset of features. Predictions are averaged
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(for regression). RFs are robust, handle high-dimensional data, and can provide feature
importance [6].

o Gradient Boosting Machines (GBM): Sequentially builds models where each new model
corrects the errors of the previous ones. Algorithms like XGBoost, LightGBM, and
CatBoost are highly efficient and accurate implementations of GBM [7].

3.3. Artificial Neural Networks (ANNs) and Deep Learning (DL) Architectures ANNSs are inspired
by the structure and function of biological neural networks. Deep Learning is a subfield of ML that
utilizes ANNs with multiple hidden layers (hence "deep") to learn hierarchical representations of data.

e  Multi-Layer Perceptrons (MLPs) / Feedforward Neural Networks: The simplest form of
ANNS, consisting of an input layer, one or more hidden layers, and an output layer. Each
neuron in a layer is connected to all neurons in the subsequent layer. MLPs are universal
function approximators, capable of learning complex non-linear mappings between inputs and
outputs. They are trained using backpropagation and gradient descent optimization [8].

e Convolutional Neural Networks (CNNs): Primarily designed for processing grid-like data,
such as images. CNNs employ convolutional layers that apply filters to detect local patterns
and features (e.g., edges, textures) across the input. For propagation loss, CNNs can
effectively process spatial data like topographical maps, building footprints, and clutter maps
as input features, learning location-specific propagation characteristics [9].

e Recurrent Neural Networks (RNNs), LSTMs, and GRUs: Designed for sequential data,
where the output at a given time step depends on previous inputs and outputs. RNNs have
internal memory, allowing them to capture temporal dependencies. Long Short-Term Memory
(LSTM) networks and Gated Recurrent Units (GRUs) are advanced RNN architectures that
mitigate the vanishing gradient problem, making them suitable for long sequences. They can
be applied to predict propagation loss in dynamic environments where path loss changes over
time or across a sequence of locations [10].

o  Graph Neural Networks (GNNs): A more recent and powerful class of neural networks
designed to operate on non-Euclidean data structures, specifically graphs. In cellular networks,
the topology (base stations, user equipment, connections) can naturally be represented as a
graph. GNNs can learn representations of nodes and edges, capturing relationships between
different network entities, which is highly relevant for modeling complex propagation
environments and network-wide interactions [11].

The choice of AI/ML algorithm depends heavily on the nature of the input data, the complexity of the
underlying propagation phenomena, the available computational resources, and the desired level of
accuracy and interpretability.

4. Al for Propagation Loss Prediction: A Review of Approaches

The application of AI/ML for signal propagation loss prediction has gained significant traction, moving
beyond traditional statistical or physical models. This section reviews various Al-based approaches,
categorizing them primarily by the underlying ML/DL technique used.

4.1. Traditional Machine Learning Approaches

Early applications of Al for path loss prediction often leveraged traditional ML algorithms due to their
relative simplicity, lower data requirements compared to deep learning, and sometimes better
interpretability.

e Linear and Polynomial Regression: While simple, these models have been used as a
baseline or in conjunction with feature engineering. They can capture the fundamental
logarithmic relationship between distance and path loss, often enhanced by incorporating
other linear effects of frequency or environment [12].

e Support Vector Regression (SVR): SVR has been widely explored due to its ability to
handle non-linear relationships using kernel functions and its robustness to noise. Studies have
shown SVR outperforming empirical models by adapting to specific environments through
training data. For instance, [13] demonstrated SVR's superior accuracy for urban microcell
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environments compared to Okumura-Hata and COST 231. Its effectiveness in handling high-
dimensional feature spaces, including various environmental parameters and antenna
characteristics, has also been noted.

e Decision Trees and Ensemble Methods (Random Forests, Gradient Boosting): These
methods have proven highly effective due to their ability to model complex, non-linear
interactions between numerous input features without requiring extensive data pre-processing
or assumptions about data distribution.

o Random Forests (RF): Several works, such as [6] and [14], have shown RFs providing
significantly better predictions than empirical models for diverse environments (urban,
suburban, indoor) and frequency bands. RFs can inherently handle mixed data types
(numerical and categorical) and provide insights into feature importance, highlighting
which environmental factors or network parameters contribute most to path loss.

o Gradient Boosting (e.g., XGBoost, LightGBM): Advanced boosting algorithms have
also been successfully applied. They often achieve state-of-the-art results due to their
sequential error correction mechanism, leading to very accurate predictions for path loss
[15]. These models are particularly well-suited for structured datasets with numerous
features representing various propagation conditions.

Strengths of Traditional ML:

e  Generally less computationally intensive to train than deep learning.

e Require less training data compared to deep neural networks.

e Some models (e.g., Decision Trees, RF feature importance) offer a degree of interpretability.
e  Effective for datasets with well-defined, engineered features.

Limitations of Traditional ML:

e May struggle to automatically extract abstract features from raw, unstructured data (e.g., raw
map images).

e Performance can plateau in highly complex, high-dimensional, and non-linear propagation
scenarios.

e Feature engineering can be time-consuming and requires domain expertise.

4.2. Artificial Neural Networks (ANNs) and Deep Learning Approaches

The ability of deep neural networks to learn hierarchical representations and highly non-linear
mappings has made them a popular choice for challenging regression problems like propagation loss
prediction, especially with the availability of larger datasets and increased computational power.

(a) Multi-Layer Perceptrons (MLPs): As the foundation of deep learning, MLPs, also known as
feedforward neural networks, have been extensively used. Studies often feed MLPs with engineered
features such as transmitter-receiver distance, frequency, antenna heights, building densities, clutter
types, and even latitude/longitude [8, 16]. MLPs can approximate highly complex, non-linear functions
that govern radio wave propagation, often outperforming traditional empirical models and sometimes
even some of the classic ML algorithms, especially when the input-output relationship is intricately
non-linear.

o Strengths: Universal function approximators, capable of modeling highly complex relationships.
o Limitations: Can be "black-box" models, sensitive to hyperparameter tuning, and may require
significant amounts of data to generalize well.

(b) Convolutional Neural Networks (CNNs): CNNs are particularly powerful when the input data has
a spatial structure, like topographical maps, building footprints, or images representing the environment.

o Application: Researchers have utilized CNNs by converting environmental data (e.g., building
height maps, land cover maps, digital terrain models) around the transmitter and receiver into
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image-like inputs [9, 17]. The convolutional layers can then automatically extract relevant
spatial features (e.g., presence of high-rise buildings, density of obstacles, line-of-sight
blockages) that are critical for propagation. This approach effectively automates a significant
part of feature engineering.

o Strengths: Excellent at learning spatial features directly from raw data, reducing reliance on
manual feature engineering; robust to small translations and distortions in input data.

o Limitations: Requires converting environmental data into a grid format, which might lose some
fine-grained information; high computational cost for training large models.

(¢) Recurrent Neural Networks (RNNs) and their variants (LSTMs, GRUs): These networks are
designed to process sequential data, making them suitable for scenarios where propagation loss
changes over time or across a sequence of locations.

o Application: RNNs can be used to model path loss in dynamic environments, such as for
mobile users where the channel conditions evolve over time [10]. LSTMs and GRUs, in
particular, can capture long-term dependencies in the channel, predicting future path loss values
based on historical measurements and sequences of user movement or environmental changes.
This can be crucial for predictive handover mechanisms or dynamic resource allocation.

o Strengths: Capable of learning from time-series data, capturing temporal dependencies.

o Limitations: Can be computationally intensive, and the sequence length can impact
performance. Generating large, labeled time-series datasets for propagation loss can be
challenging.

(d) Graph Neural Networks (GNNs): GNNs are an emerging class of neural networks designed to
operate on graph-structured data. Cellular networks naturally lend themselves to graph representation,
where base stations, users, and their interconnections form a graph.

o Application: GNNs can model propagation loss by representing the network as a graph where
nodes are base stations or user equipment, and edges represent communication links. Node
features might include antenna parameters, location, and environmental clutter, while edge
features could include distance or initial propagation estimates. GNNs can learn how
propagation loss between two nodes is influenced by their neighbors and the overall network
topology [11, 18]. This is particularly promising for modeling complex multi-cell interference
scenarios and network-wide channel state information.

o Strengths: Ideal for modeling non-Euclidean, relational data inherent in network topologies;
can capture complex interactions between different network elements.

o Limitations: Still a relatively new area of research for path loss prediction; constructing
accurate and scalable graph representations of large cellular networks can be challenging;
computational complexity can be high for very large graphs.

4.3. Hybrid Al-Based Approaches
Some research explores combining different Al techniques or integrating Al with traditional models:

e Hybrid ML/DL Models: For example, using an RF model to identify important features, then
feeding those to an MLP, or using CNNs for feature extraction from images, followed by an
MLP for regression [19].

e Al-Enhanced Ray Tracing: Instead of fully replacing ray tracing, Al can optimize it (e.g.,
dynamically adjusting ray parameters) or correct its errors, leading to faster and more accurate
deterministic models. Al can also be used to learn and interpolate propagation effects in areas
not covered by a full ray tracing simulation [20].

4.4. Data Sources and Feature Engineering

The performance of any Al model heavily relies on the quality and quantity of its training data and the
relevance of its input features.

(a) Input Features: Common features for path loss prediction include:
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o Geometric: Tx-Rx distance, Tx/Rx antenna heights, geographical coordinates.

o Frequency: Carrier frequency.

o Environmental: Building heights, building density, land cover (clutter categories like
urban, suburban, rural, water, forest), terrain elevation, street width, vegetation density.

o Antenna Characteristics: Antenna type, beamforming parameters (for active antennas).

o Time/Weather: Time of day, day of week, seasonal effects, atmospheric conditions.

(b) Data Acquisition:

o Drive Tests/Measurement Campaigns: Directly collected real-world data, highly
accurate but expensive and time-consuming.

o Ray Tracing Simulations: Generate large amounts of high-fidelity data for various
scenarios, but dependent on the accuracy of 3D environmental models.

o Crowdsourcing: Utilizing data from user devices, offering scale but with potential issues
regarding data consistency and privacy.

o Publicly Available Geospatial Data: Open-source maps, building databases (e.g.,
OpenStreetMap, 3D building models), digital elevation models (DEMs), satellite imagery.

Effective feature engineering is crucial for traditional ML models, transforming raw data into
meaningful inputs. For deep learning, especially CNNs and GNNs, the models can learn features
directly from raw data representations, reducing manual effort but increasing data volume requirements.

5. Challenges and Open Issues

Despite the significant advancements, several challenges and open issues remain in the quest for fully
robust and deployable Al-driven propagation loss prediction in cellular networks:

5.1. Data Availability, Quality, and Diversity:

o Scarcity of Labeled Data: High-quality, diverse datasets covering a wide range of
frequencies, environments, antenna configurations, and measurement conditions are expensive
and time-consuming to acquire. This is particularly true for emerging scenarios like mmWave
and sub-THz propagation, indoor environments, or specific 3D urban topographies.

e Data Inconsistency and Bias: Measurement errors, device variations, and inconsistent data
collection methodologies can introduce noise and bias, leading to models that generalize
poorly.

e Privacy Concerns: Crowdsourced data, while abundant, raises significant privacy
implications regarding user locations and movements.

5.2. Model Interpretability and Explainability (XAI):

e Black-box Nature: Deep Learning models, in particular, are often "black boxes," making it
difficult to understand why a particular prediction is made. In engineering, understanding the
underlying physical reasons for attenuation is crucial for network troubleshooting and design
decisions.

e Trust and Acceptance: Lack of interpretability hinders trust among network engineers and
operators, who often prefer models with clear physical justifications. Developing explainable
Al (XAI) for wireless propagation is a critical area.

5.3. Generalization and Transferability:

e Site-Specificity: Models trained in one geographical area or environment often perform
poorly when deployed in a different one, necessitating extensive retraining or fine-tuning,
which is costly and time-consuming.

o Frequency and Technology Dependence: Models trained for one frequency band (e.g., sub-
6 GHz) may not accurately predict loss for another (e.g., mmWave), due to different
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propagation characteristics. The same challenge applies to different antenna technologies (e.g.,
MIMO, massive MIMO).

e Dynamic Environments: Most models struggle to adapt to real-time changes in the
environment (e.g., new buildings, seasonal foliage changes, dynamic scattering from vehicles
and pedestrians) without continuous retraining or recalibration.

5.4. Computational Complexity and Real-time Operation:

e Training Time: Deep Learning models, especially those with many layers or complex
architectures (like large CNNs, GNNs), require significant computational resources
(GPUs/TPUs) and time for training, especially with large datasets.

o Inference Latency: While inference is generally faster than training, for real-time
applications like dynamic resource allocation or mobility management, even millisecond
delays can be critical. Deploying complex models on resource-constrained edge devices is a
challenge.

5.5. Hybridization with Physical Models:

e How to effectively combine the data-driven power of AI with the physical accuracy and
interpretability of traditional electromagnetic models (e.g., ray tracing) remains an open
challenge. Purely data-driven models might violate physical laws, while purely physics-based
models lack adaptability.

5.6. Uncertainty Quantification:

e  Most Al models provide point predictions without quantifying the uncertainty or confidence
associated with those predictions. For critical wireless applications, understanding the
prediction variance is important for risk assessment and robust decision-making.

5.7. Specific Literature Review: 2010-2025

This review employs a systematic approach to identify relevant literature. The review was
accomplished through comprehensive survey of previous works on Al applications for signal
propagation loss, combining predictive regression learning, machine learning, and neural networks
modelling techniques. The specific focus was on publications from 2010 to 2025 as presented in table 2.

Table 2:Specific Literature Review on Al Application for propagation loss prediction : 2010-2025

Study Al Method @ Data Source Key Findings Advantages Limitations
Support Field Achieved Robust against | Needs extensive
Zhang et al.  Vector accuracy of 92% | noise; effective | parameter
. measurement g . g . .
(2015) [25] | Regression data in urban | in high | tuning; requires
(SVR) environments dimensions good data quality
Isabona, and EZ?verlrk e B
. ’ ) Field accuracy  with | High precision | Needs further
Srivastava | with log-
. measurement proposed accuracy field work
(2016) [26] | distance path
method
loss model
Different Al
Ebhota et al Review  of systems Different Al
(2018) [27] Al and non | No field data achieved system models | No field work
Al methods different were stidied
accuracy
Ehota et al, Combined Detailed field  Proposed hybrid | Proposed hybrid K Need further
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Study
(2018)

Lee et al
(2018) [29]

Ebhota et al,
(2019) [30]

Isabona and
Igbinovia
(2019) [31]

Isabona
(2020) [32]

Chen & Wu
(2020) [33]

Kumar et al.
(2021)[34]

Isabona
(2021)[35]

Kumar et al.
(2021) [36]

Al Method

Vector
Statistics
combined
with
systems

Al

Artificial
Neural
Networks
(ANN)

ANN
hyparameter
s
investigated

Different Al
systems
investigated

ANN system
studied with
Wavelet

Random
Forest (RF)

Deep
Learning
(LSTM)

Joint
Statistical
and Machine
Learning
Approach

Deep
Learning
(LSTM)

Data Source

work

Simulated data

Field data

Field data

Field data

Mixed datasets
from  various
environments

Time-series
signal data

Field data

Time-series
signal data

Key Findings

approach Dbetter
than non hybrid
method

Improved
prediction
accuracy

traditional
models by 15%

over

Learning  rate
has huge impart
on ANN modes

The radial basis
function model
gave better
prediction

results compared
to the MLPNN
and GRNN

ANN method
combined with
wavelet
processing
achieved
improved
accuracy

Reduced
prediction error
by incorporating
environmental
factors

Captured
temporal
correlation
effectively,
showing
improved
prediction

Combined
hybrid
approached
achieved Dbetter
precision
accuracy

Captured
temporal
correlation
effectively,
showing
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approach
achieved
improved
accuracy

Non-linear
modeling
capability;
generalization to
unseen data

Impact of
learning rates on
ANN revealed

The GRNN
model also gave
a good
prediction
results with
marginal errors
compared to the
MLPNN

The impact of
pre-proccessing

with ANN
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Handles large
datasets; less
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Captures
complex
relationships;
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sequential data

Impact of
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Statistical
Al revealed

and
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complex
relationships;
suitable for
sequential data

Limitations

validation

Computational
complexity; risk
of overfitting

There is need to
investigated
other parameters

The complexity
of each models
was not
investigated

The complexity
of hybrid method
was not
investigated

Limited
interpretability of
results; ensemble
method
complexity

High
computational
cost; requires a
massive amount
of data

May result to
high
computational
cost

High
computational
cost; requires a
massive amount
of data



Study Al Method

Ituabhor et g)iicf:fde
al, (2022)
[37] neural
networks
Ituabhor et gr}rlll;rilr(iical
?;,8] (2022) and Machine
Learning
Gradient
Smith et al.  Boosting
(2023) [39] | Machines
(GBM)
Olukanni et | Hybrid
al (2023)  Empirical
[40] and ANN
E.F.
Ramirez et | Hybrid Al
al, (2024) Systems
[41].
Ugbeh R.N .
et al, (2025) izzre‘f £l
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kechi Risi,
and Deep Al
Konyeha, model
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Machine
Learning
. ith
Emughedi Wi .
| Exhaustive
(2025) [44] GMM
Clustering
Algorithm

Data Source

Time-series
signal data

Non-time series
data

Real-world
network
performance
data

Real-world
network
performance
data

Combine
multiple AI
methods for
accuracy

Real-time data

Real-time data

Real-time data

Key Findings

improved
prediction

Captured the
time-series data
correlation

Achieved a high
RMSE accuracy

Achieved a high
R? of 0.95 for
urban scenarios

Achieved a high
R? of 0.95 for
complex urban
area

Achieved some
level of accuracy

Developed
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In analyzing the studies, several patterns emerge. Machine learning techniques such as SVR, ANN, RF,
LSTM, and GBM show varied success in predicting signal propagation loss. Key insights from the

literature highlight:

e  Variability in Data Sources: Many studies use simulated data, which may not translate perfectly
to real-world scenarios. There is a need for more field-tested approaches that combine both
simulated and empirical data.

e  Model Complexity vs. Interpretability: More complex Al models like deep learning offer

superior prediction capabilities

but

at the

cost
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telecommunications may find simpler models like RF or SVR more useful despite some loss in
accuracy.

e Emerging Trends: The recent trend towards utilizing deep learning techniques, particularly
LSTM, indicates a growing recognition of the importance of temporal and spatial correlations in
signal loss data.

e  Challenges Ahead: While Al methods show promise, the necessity of extensive datasets for
training and validation remains a critical barrier, especially in forming generalizable models
applicable in diverse environments.

6. Future Directions

The field of AI for wireless propagation loss prediction is rapidly evolving. Addressing current
challenges and capitalizing on emerging Al paradigms will pave the way for more robust, accurate, and
practical solutions.

6.1. Hybrid Physics-Informed AI Models:

e Integrating Domain Knowledge: Future research will increasingly focus on "Physics-Informed
Machine Learning (PIML)" [21]. This involves incorporating known physical laws (e.g., Friis
equation, reflection/diffraction principles, conservation of energy) directly into the AI model's
architecture, loss function, or regularization. This can improve generalization, reduce data
requirements, and enhance interpretability by ensuring predictions adhere to fundamental physical
principles. For instance, an Al model could learn correctional factors for a ray-tracing engine
rather than predicting path loss from scratch.

6.2. Federated Learning for Privacy-Preserving Data Collection:

e Distributed Training: Federated Learning (FL) allows multiple organizations (e.g., network
operators) or devices (e.g., user equipment) to collaboratively train a shared Al model without
exchanging their raw local data [22]. This is crucial for overcoming data privacy concerns and
aggregating diverse datasets from various network deployments, leading to more robust and
generalizable models.

6.3. Explainable Al (XAI) for Wireless Communications:

e Demystification Developing XAI techniques tailored for wireless propagation models is
essential for building reliable and enabling practical deployment. This includes methods to
visualize what features an Al model prioritizes, identify critical propagation paths, or pinpoint
environmental factors driving specific attenuation levels.

6.4. Digital Twin Technology and Real-time Prediction:

e Virtual Network Replica: The concept of a "digital twin" — a virtual replica of a physical
network synchronized with real-time data — offers a powerful framework. Al propagation
models can be a core component of this digital twin, providing highly accurate, real-time path
loss predictions that adapt to dynamic environmental changes, user mobility, and network
configurations. This enables proactive optimization, planning, and predictive maintenance
[23].

6.5. Advanced Graph Neural Networks and Transformers:

e End-to-End Network Modeling: Further research into GNNs for cellular networks holds
immense promise, moving beyond simple node-to-node prediction to model complex
network-level interactions, interference, and resource allocation decisions that depend on
propagation. Transformer architectures, initially successful in natural language processing and
computer vision, are also being explored for their ability to model long-range dependencies
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and complex interactions in large, unstructured datasets, potentially applicable to propagation
environments [24].

6.6. Unsupervised and Self-Supervised Learning:

e Reducing Label Dependence: Given the challenge of acquiring labeled data, research into
unsupervised and self-supervised learning methods is critical. These approaches can learn
useful representations from unlabeled data (e.g., millions of signal strength measurements
without explicit path loss labels) or by creating artificial prediction tasks from the data itself.

6.7. Edge Al for Low-Latency and Scalable Inference:

e Decentralized Intelligence: Deploying trained AI propagation models closer to the data
source (on base stations or edge servers) can significantly reduce inference latency and
network backhaul requirements. This involves optimizing model size and complexity for
resource-constrained edge devices while maintaining accuracy.

6.8. Standardized Datasets and Benchmarks:

e To accelerate research and enable fair comparisons between different AI models, the
development of large, publicly available, standardized datasets (including diverse
environmental data, various frequency bands, and different deployment scenarios) with clear
benchmarking methodologies is crucial.

7. Conclusion

Accurate prediction of signal propagation loss is an enduring and critical challenge in the design,
optimization, and operation of cellular communication networks. While traditional empirical and
deterministic models have served their purpose, their inherent limitations—lack of adaptability, high
computational cost, and site-specificity—are increasingly evident in the face of complex and dynamic
5G and future 6G environments.

Artificial Intelligence, particularly Machine Learning and Deep Learning, has emerged as a
transformative paradigm for addressing these challenges. This review has highlighted the successful
application of a wide range of Al techniques for predictive regression learning of path loss, from
classic algorithms like SVR and Random Forests to advanced deep neural networks such as MLPs,
CNNs, RNNs, and the promising Graph Neural Networks. These data-driven approaches offer
enhanced accuracy, adaptability to diverse environments, and the ability to learn intricate non-linear
relationships that elude predefined mathematical models.
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