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Abstract: The burgeoning complexity and dynamic nature of 5G New Radio (NR) networks necessitate 

accurate and reliable throughput forecasting for efficient resource allocation, proactive anomaly detection, 

and robust network planning. Generalized Additive Models (GAMs) offer a powerful, interpretable, and 

flexible framework for modelling the non-linear relationships inherent in 5G throughput data. However, the 

performance and interpretability of GAMs are critically dependent on the appropriate selection of their 

hyperparameters. This paper investigates the influence of various hyperparameter tuning approaches based 

on Bayesian optimization on the prognostic estimation capabilities of GAMs for real-world 5G-NR 

throughput data. Through a comparative study, we evaluate these tuning strategies based on key forecasting 

metrics (e.g., RMSE, MAE, R-squared) and computational efficiency. Our findings reveal that while all 

methods can identify competitive models, Bayesian optimization with ‘all-univariate’ and ‘all’ methods of 

selecting GAM hyperparameters achieves preferred superior performance with significantly reduced 

computational effort and precision accuracy, highlighting its efficacy for complex real-world datasets like 

5G-NR throughput, where rapid model development and optimization are crucial. 

Keywords: 5G-NR Throughput, Generalized Additive Models (GAMs), Hyperparameter Tuning, 

Prognostic Estimation, Bayesian Optimization,  Network Optimization. 

1. Introduction 

The advent of 5G New Radio (NR) technology promises unprecedented speeds, ultra-low latency, and 

massive connectivity, fundamentally transforming various industries. To fully realize these benefits, precise 

network management and resource optimization are paramount [1, 2]. A critical component of this 

optimization is the ability to accurately forecast network traffic, particularly throughput, which directly 

impacts user experience, service quality, and operational expenditure [3, 4]. 5G-NR throughput data is 

inherently complex, characterized by non-linear relationships, time-varying dynamics, and influences from 

numerous contextual factors such as user density, channel conditions, interference, and cell load. 

Traditional forecasting methods, such as ARIMA models, often struggle with the non-linear and high-

dimensional nature of telecommunications data. While complex machine learning (ML) and deep learning 

(DL) models can capture intricate patterns, their "black-box" nature often hinders interpretability, making it 

challenging for network operators to understand the underlying drivers of throughput fluctuations. 

Generalized Additive Models (GAMs) emerge as a compelling alternative, offering a balance between 

predictive power and interpretability. GAMs extend Generalized Linear Models (GLMs) by allowing the 

linear predictor to be dependent on smooth, non-linear functions of the predictor variables, thereby 

capturing complex relationships without sacrificing the ability to visualize and understand individual 

covariate effects. 

https://jcaes.net/
mailto:ckonyeha@biu.edu.ng,
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However, the effectiveness of GAMs hinges significantly on the appropriate selection of their 

hyperparameters. Key hyperparameters include the choice of basis functions (e.g., cubic regression splines, 

thin plate splines) and, crucially, the smoothing parameters associated with these functions. Incorrectly 

chosen smoothing parameters can lead to either underfitting (over-smoothing, missing important patterns) or 

overfitting (undersmoothing, capturing noise), both of which degrade prognostic accuracy. The challenge 

lies in efficiently exploring the vast hyperparameter space to identify optimal configurations that yield 

robust and accurate forecasts. 

This paper addresses this challenge by systematically investigating the influence of different hyperparameter 

tuning approaches on the prognostic estimation capabilities of GAMs for 5G-NR throughput data. Our 

objective is to quantify the performance gains and computational trade-offs associated with each tuning 

method, providing practical guidance for academics and practitioners in the telecommunications domain. 

The insights derived will contribute to building more reliable and interpretable forecasting models for the 

dynamic 5G ecosystem. 

2. Background and Related Work 

2.1. 5G-NR Throughput Data Characteristics  

5G-NR throughput is influenced by a multitude of factors, including radio conditions (e.g., Signal-to-

Interference-plus-Noise Ratio (SINR), Reference Signal Received Power (RSRP)), network load, user 

equipment capabilities, applied modulation and coding schemes (MCS), and available bandwidth.  

Prior work in 5G network analytics has explored various forecasting techniques, ranging from statistical 

models (e.g., ARIMA, Exponential Smoothing) [5] to traditional machine learning (e.g., Support Vector 

Regression, Random Forests) [6] and deep learning approaches (e.g., GRUs, Transformers) [7]. While DL 

models show promise, their lack of clarity in how they arrive at their decisions often remains a significant 

hurdle for operational deployment [8-13]. 

The concept of using GAMs in telecommunications has been explored in several previous works. Lai et al. 

(2024) [14] introduced the idea of using GAMs for modelling non-linear relationships in environmental data, 

showcasing the model's ability to handle complex predictors effectively. Clark and Wells (2023) 

[15] utilized GAMs to forecast ecological time series data. Chen et al. (2020) [16] examined flow data in 5G 

networks using a modified GAM approach that integrated machine learning techniques, yielding promising 

results in estimating throughput. The prediction of 5G throughput with a boosted additive model f is studied 

by the authors in [17]. These studies underscore the applicability of GAMs in telecommunications and 

provide a foundation for further exploration in the context of 5G-NR throughput data estimation. In this 

paper, our contributions are as follows: 

⚫ Provision of GAM with Bayesian optimisation that provides valuable insights into the non-linear 

relationships between 5G throughput and its predictors.  

⚫ The influence of Hyperparameter selection approaches on GAM performance with the Bayesian 

Optimisation method for Optimized 5G-NR Throughput Data Estimation has been revealed  

⚫ An adept precision, accuracy and computational efficiency performance of GAM has been shown 

using four series of throughput data sets. 

 

3. Methodology 

This section details the proposed methodology for estimating 5G throughput using a Generalized Additive 

Model with Bayesian hyperparameter selection. Specifically, the section outlines how the throughput data 

was obtained, the GAM formulation, hyperparameter selection methods and tuning strategies, and the 

evaluation metrics employed in this study. 

3.1. Data Acquisition and Preprocessing  

The throughput data utilized in this paper were sourced from an online repository [19], made accessible to 

researchers following a series of real-time measurements conducted across various urban environments in 

Minneapolis, United States. These measurements were gathered using two 5G smartphones: the Motorola 
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Moto Z3 and the Samsung Galaxy S10 5G (SM-G977U). The researchers specifically focused on the 5G 

networks of three major carriers in three large U.S. cities. 

Among the parameters examined were the handoff mechanisms within the 5G network and their impact on 

overall network performance. The authors also evaluated the performance of various applications over the 

tested 5G wireless networks during activities such as web browsing, online downloading, and video 

streaming. A substantial dataset of 15 terabytes was employed for these comprehensive experiments, 

which were conducted on Verizon, T-Mobile, and Sprint 5G networks. Notably, the Verizon network 

utilized mmWave 5G services in the tested environments, while T-Mobile also operated within the 

mmWave band, and Sprint functioned at 2.5 GHz. The measurements were conducted against a Microsoft 

Azure server, achieving remarkably high 5G throughput rates of up to 3 Gbps [19]. 

This extensive research not only sheds light on the capabilities of 5G technology but also provides 

valuable insights into the performance variations across different carriers and urban settings. 

The data will undergo the following preprocessing steps: 

⚫ Missing Value Imputation: Address any missing data points using appropriate techniques (e.g., 

interpolation for time series). 

⚫ Outlier Detection and Treatment: Identify and mitigate extreme values that could skew model 

training. 

3.2. Generalized Additive Model (GAM) Formulation  

A generalized additive model (GAM) is an explicable statistical model that explains a response variable 

using a sum of univariate and bivariate shape functions of predictors. The GAMs were introduced by Hastie 

and Tibshirani [4], to provide a flexible framework for modelling the relationship between a response 

variable and multiple predictor variables.  

Here, the GAM is formulated with throughput as the response variable and the data point, x is represented as 

the independent variable. The standard GAM uses a univariate shape function for each predictor. 

y ~ N (μ, σ
2
)                                                                       (1) 

g(μ) = μ = c + f1(x1) + f2(x2) + ⋯ + fp(xp)                         (2) 

 

where y is a response variable that follows the normal distribution with mean μ and standard deviation σ. 

g(μ) is an identity link function, and c is an intercept (constant) term. fi(xi) is a univariate shape function for 

the ith predictor, which is a boosted tree for a linear term for the predictor (predictor tree). 

 

In this paper, we used the fitrgam function in MATLAB 2024B software and computational environment to 

engage the GAM for the prognostic throughput data estimation. The fitrgam utilises a boosted tree as a 

shape function for each predictor and pair of predictors, therefore, enabling it adaptive capture the nonlinear 

relation between the response variable and the predictor  

 

2.3. Hyperparameter Tuning Approaches Hyperparameter tuning is the process of finding the optimal set 

of hyperparameters for a model that yields the best performance on a given dataset. Some core approaches 

include: 

• Grid Search: This method exhaustively explores every combination of hyperparameter values within a 

predefined, discrete search space. While guaranteed to find the best combination within the defined grid, 

it becomes computationally prohibitive as the number of hyperparameters or their possible values 

increase. 

• Random Search: Random Search samples hyperparameter combinations randomly from the specified 

search space for a fixed number of iterations. It has been shown to be more efficient than Grid Search in 

high-dimensional hyperparameter spaces, often finding near-optimal solutions much faster, as optimal 

values are often concentrated in a small region of the space. 

• Bayesian Optimization (BO): This is a sequential model-based optimization strategy that attempts to 

find the global optimum of an objective function that is expensive to evaluate. BO builds a probabilistic 

surrogate model (e.g., Gaussian Process) of the objective function and uses an acquisition function (e.g., 

Expected Improvement) to decide which hyperparameter configuration to evaluate next. By 

intelligently balancing exploration (trying new, uncertain regions) and exploitation (refining promising 

regions), BO often finds better solutions with significantly fewer evaluations compared to Grid or 

Random Search, making it particularly suitable for computationally expensive models or objective 

functions. 
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While these tuning methods have been widely applied to various machine learning models, their specific 

impact on GAM performance for complex time-series data like 5G-NR throughput, especially concerning 

prognostic estimation and cognitive state quantification, warrants a dedicated investigation. 

The primary hyperparameters for GAMs used in this paper via Bayesian optimisation are shown in Table 1. 

Table 1: GAM Hyperparameters and their selection Method  based on Bayesian Optimisation 

Selection 

Method 

Hyperparameters  Interpretation 

Auto Initial Learning Rate for 

Predictors, Number of Trees per 

Predictor, Interactions, Initial Learning 

Rate for Interactions, and Number of 

Trees per Interaction 

Optimize Initial Learning 

Rate for 

Predictors, Number of 

Trees, Interactions, Initial 

Learning Rate for 

Interactions, and Number 

of Trees per Interaction 

Auto-

univaraiate 

Initial Learning Rate for Predictors 

and    Number of Trees per Predictor 

Optimize Initial Learning 

Rate and    Number of 

Trees only 

All-

univariate 

Interactions, Initial Learn Rate for 

Interactions, 

Optimize all eligible 

univariate parameters 

all Initial Learning Rate for 

Predictors, Number of Trees per 

Predictor, Interactions,  

Initial Learning Rate for Interactions 

and Number of Trees  per Interaction 

 Optimise all eligible 

hyperparameters 

 

3.3. Hyperparameter Tuning Approaches 

For each tuning approach, the objective function to minimize will be the Root Mean Squared Error (RMSE) 

on the throughput datasets, determined via cross-validation. Due to the time-series nature of the data, a 

blocked or rolling origin cross-validation strategy will be employed to respect temporal dependencies and 

prevent data leakage. 

 

      3.4  Bayesian Optimization (BO) implementation: 

o We employ a Gaussian Process (GP) as the surrogate model to approximate the objective function 

(RMSE). 

o The Expected Improvement (EI) is explored as the acquisition function to determine the next 

hyperparameter configuration to evaluate. 

o The search space for hyperparameters is designed to be continuous, allowing BO to explore a finer 

granularity than discrete grids. 

o The number of BO iterations is set to 30 iterations. 

3.5. Prognostic Estimation and Evaluation Metrics 

After tuning, the best model from each tuning approach (i.e., the GAM with the optimal set of 

hyperparameters found by Grid, Random, or BO) will be re-trained on the full training dataset. Prognostic 

estimation will then be performed on the unseen test set for a defined forecasting horizon (e.g., 24-48 hours 

ahead). 

3.6 Performance Evaluation Metrics 

The performance of the GAM models is evaluated using the following metrics on the test set: 

• Minimum Objective function value (MOV): Measures the minimum value or the lowest value 

the function that the can GAM can achieve within a defined set of hyperparameter constraints via 

the Bayesian optimisation process.  

• Root Mean Squared Error (RMSE): Measures the average magnitude of the prediction errors. 

https://uk.mathworks.com/help/stats/fitrgam.html#mw_abf98949-442e-41b5-a6d1-3206a940e72f
https://uk.mathworks.com/help/stats/fitrgam.html#mw_abf98949-442e-41b5-a6d1-3206a940e72f
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerPredictor
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerPredictor
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-Interactions
https://uk.mathworks.com/help/stats/fitrgam.html#mw_c9f31add-67e0-4893-b3ae-023f65d00145
https://uk.mathworks.com/help/stats/fitrgam.html#mw_c9f31add-67e0-4893-b3ae-023f65d00145
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerInteraction
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerInteraction
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-Interactions
https://uk.mathworks.com/help/stats/fitrgam.html#mw_c9f31add-67e0-4893-b3ae-023f65d00145
https://uk.mathworks.com/help/stats/fitrgam.html#mw_c9f31add-67e0-4893-b3ae-023f65d00145
https://uk.mathworks.com/help/stats/fitrgam.html#mw_c9f31add-67e0-4893-b3ae-023f65d00145
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerInteraction
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerInteraction
https://uk.mathworks.com/help/stats/fitrgam.html#mw_abf98949-442e-41b5-a6d1-3206a940e72f
https://uk.mathworks.com/help/stats/fitrgam.html#mw_abf98949-442e-41b5-a6d1-3206a940e72f
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerPredictor
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerPredictor
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-Interactions
https://uk.mathworks.com/help/stats/fitrgam.html#mw_c9f31add-67e0-4893-b3ae-023f65d00145
https://uk.mathworks.com/help/stats/fitrgam.html#mw_28385a42-b76b-4152-8aea-87a9206a5ef5_sep_shared-NumTreesPerInteraction
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• R-squared (R2): Represents the proportion of variance in the target variable explained by the 

model. 

• Mean Absolute Error (MAE): Measures the average difference between throughput values and 

actual throughput values. 

4. Results and Discussion  

This section will present the empirical results of our comparative analysis. We conducted four series of 

GAM prognostic estimation of the throughput datasets to compare the performance of different 

hyperparameter selection methods for GAMs that has been revealed in table 1. For each method, we 

evaluated the performance of GAMs in terms of both computational efficiency and precision accuracy.  

(a) Performance of GAM with Bayesian Optimisation in terms of computational efficiency 

Plotting the objective function value against the iteration number is a standard and effective method for 

evaluating the computational efficiency of iterative algorithms, allowing for the assessment of convergence 

speed and performance comparison between different approaches. The graphs in Figs.1-4 wherein the 

objective function value is on the y-axis and iteration number on the x-axis, are plotted to visualize the 

convergence of the four hyperparameter selection methods with the Bayesian optimization algorithm. The 

graphs clearly demonstrate how the "goodness" of each selection method improves or changes with every 

step. The visualization also reveals how quickly each selection method with the Bayesian algorithm 

approaches an optimal solution. Thus, attaining the lowest objective function value is the target. From the 

graphs, it can be seen that each selection method behaves differently in terms of the minimum objective 

function value during the iteration process progression. However, from the results, the ‘all-univariate’ and 

‘all’ hyperparameter selection methods attain the lowest objective function value with the estimated 5G-NR 

throughput at 25m, 50m, 75m, and 100m, compared to the other two methods, which are ‘auto’ and ‘auto-

univariate’. The results reveal that the relative performance of each selection method is dependent on the 

characteristics of the throughput dataset and the computational resources available. 

 
Fig.1: Objective function value vs the iteration number performance plot of GAM for the four 

hyperparameter selection methods at 25m.  
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Fig.2: Objective function value vs the iteration number performance plot of GAM for the four 

hyperparameter selection methods at 50m.  

 

 
Fig.3: Objective function value vs the iteration number performance plot of GAM for the four 

hyperparameter selection methods at 75m.  
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Fig.4: Objective function value vs the iteration number performance plot of GAM for the four 

hyperparameter selection methods at 100m.  

 

 

(b) Performance of GAM with Bayesian Optimisation in terms of Precision Accuracy 

The graphs in Figs. 5-8 and Figs.9-12 are plotted to display how each GAM hyperparameter selection 

method precisely performs on the throughput data estimation via the GAM based Bayesian optimisation 

algorithm. For the four selection methods used, see Table 1 for reference. The eight graphs also show that 

the GAM based Bayesian optimisation algorithms with ‘all-univariate’ and ‘all’ hyperparameter selection 

methods attain the lowest RMSE and best R values on the estimated 5G-NR throughput at 25m, 50m, 75m 

and 100m, compared to other two methods, which are ‘auto’ and ‘auto-univariate’. The summary of the 

selection method in terms of RMSE, MAE, and R values is presented in Table 2. Our results show that the 

choice of hyperparameter selection method can significantly affect the performance of GAMs.  

 
Fig.5: Estimated Throughput vs Measurement using GAM  

for the four hyperparameter selection methods at 25m.  

 

 
Fig.6: Estimated Throughput vs Measurement using GAM  

for the four hyperparameter selection methods at 50m.  
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Fig.7: Estimated Throughput vs Measurement using GAM  

for the four hyperparameter selection methods at 75m.  

 
Fig.8: Estimated Throughput vs Measurement using GAM  

for the four hyperparameter selection methods at 100m.  

 

 
Fig.9: Estimated Throughput vs Actual Throughput using GAM  



 9 

for the four hyperparameter selection methods at 25m.  

 

 
Fig.10: Estimated Throughput vs Actual Throughput using GAM  

for the four hyperparameter selection methods at 50m.  

 

 
Fig.11: Estimated Throughput vs Actual Throughput using GAM  

for the four hyperparameter selection methods at 75m.  

 

 
Fig.12: Estimated Throughput vs Actual Throughput using GAM  
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for the four hyperparameter selection methods at 100m.  

 

Table: Estimated Throughput Precision performance using GAM  

for the four hyperparameter selection methods at 25m, 50m,75m and 100m.  

 

 25m 

Metric Auto Auto-univariate All-univariate All 

RMSE 10.99 11.00 7.18 9.15 

MAE 6.63 6.65 3.96 5.04 

R 0.9846 0.9846 0.9934 0.9894 

                                                50m 

 Auto Auto-univariate All-univariate All 

RMSE 7.16 8.11 5.92 7.00 

MAE 3.69 4.21 3.16 3.55 

R 0.9930 0.9910 0.9952 0.9933 

 75m 

 Auto Auto-univariate All-univariate All 

RMSE 8.56 8.23 6.67 6.61 

MAE 4.50 4.10 3.57 3.42 

R 0.9911 0.9920 0.9933 0.9937 

                                           100m 

 Auto Auto-univariate All-univariate All 

RMSE 6.15 6.16 5.09 4.50 

MAE 3.78 3.99 3.02 2.68 

R 0.9935 0.9935 0.9955 0.9965 

 

5. Conclusion 

Generalized Additive Models (GAMs) offer a powerful, interpretable, and flexible framework for modelling 

complex, non-linear relationships in data. Their effectiveness, however, is significantly influenced by the 

proper selection of hyperparameters, particularly those governing the smoothness of the component 

functions. In this paper, we investigated the impact of different hyperparameter selection methods on the 

adaptive estimation performance of GAM applied to 5G-NR throughput prediction. Using a real-world 5 G-

NR throughput dataset, we evaluate models based on key metrics such as Root Mean Squared Error (RMSE), 

R-squared, and computational efficiency. Our findings reveal that while all methods can identify 

competitive models, Bayesian Optimization with ‘all-univariate’ and ‘all’ method of selecting GAM 

hyperparameters achieves comparable superior performance with significantly reduced computational effort 

and precision accuracy, highlighting its efficacy for complex real-world datasets like 5G-NR throughput, 

where rapid model development and optimization are crucial. Future research directions include: 

• Exploring other hyperparameter optimization techniques: Investigating the performance of 

more advanced optimization algorithms, such as genetic algorithms and particle swarm 

optimization. 

• Incorporating more features: Expanding the feature set to include additional factors that 

influence 5G-NR throughput, such as channel type, environment type, and user mobility patterns. 

• Developing adaptive hyperparameter optimization strategies: Designing methods that 

dynamically adjust the hyperparameter search space based on the characteristics of the data. 

• Applying GAMs to real-world 5G-NR data: Validating the findings of this research on real-

world 5G-NR throughput data collected from operational networks. 

• Investigating different basis function types: Explore other smoothing function options within 

GAMs, such as Thin Plate Regression Splines (TPRS) and Duchon splines. 

By addressing these research directions, we can further enhance the accuracy and robustness of GAM 

models for 5G-NR throughput prognostic estimation, enabling more effective resource management, 

optimized network planning, and improved user experience in 5G-NR networks. 
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